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Abstract. As networks continue to grow in size and complexity, dis-
tributed network monitoring and resource querying are becoming in-
creasingly difficult. Our aim is to design, build, and evaluate a scalable
infrastructure for answering queries over distributed measurements, at
reduced costs (in terms of both network traffic and query latency) while
maintaining required precision. In this infrastructure, each network node
owns a set of numerical measurements and actively maintains bounds on
these values cached at other nodes. We can answer queries approximately,
using bounds from nearby caches to avoid contacting the owners directly.
We focus on developing efficient and scalable techniques to place, locate,
and manage bounded approximate caches across a large network. We
have developed two approaches: One uses a recursive partitioning of the
network space to place caches in a static, controlled manner, while the
other uses a locality-aware distributed hash table to place caches in a
dynamic and decentralized manner. In this paper, we focus on the latter
approach. Experiments over a large-scale emulated network show that
our techniques are very effective in reducing query costs while generat-
ing an acceptable amount of background traffic; they are also able to
exploit various forms of locality that are naturally present in queries,
and adapt to volatility of measurements.

1 Introduction

Consider a network of nodes, each monitoring a number of numeric measure-
ments. These measurements may be related to performance, e.g., per-node
statistics such as CPU load and the amount of free memory, or pairwise statis-
tics such as latency and bandwidth between nodes. Measurements may also be
application-specific, e.g., progress of certain tasks, rate of requests for particular
services, popularity of objects in terms of number of recent hits, etc. Such mea-
surements are of interest to distributed monitoring systems (e.g., Ganglia [8])
as well as systems requiring support for querying distributed resources (e.g.,
PlanetLab [12] and the Grid [6]).

We consider the problem of efficiently supporting relational-style queries over
these distributed measurements. For example, a network administrator may want
to issue periodic monitoring queries from a workstation over a remote cluster
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of nodes; a team of scientists may be interested in monitoring the status of
an ongoing distributed simulation running over the Grid. The results of these
monitoring queries may be displayed in real time in a graphical interface on
the querying node, or used in further analysis. As another example, consider
relational-style querying of distributed resources. Suppose there are two sets
of nodes. A query may request pairs of nodes (one from each set) satisfying
the following condition: Both nodes have low load (which can be expressed as
relational selection conditions), and the latency between them is low (which
can be expressed as a relational join condition). Such queries are typical in
resource discovery, e.g., when a Grid user wants to select a data replica and a
compute server among candidate replicas/machines to perform a job, or when
a distributed systems researcher wants to select some nodes on PlanetLab with
desired load and connectivity requirements for running experiments.

With increasing network size and complexity, the task of querying distributed
measurements has become exceedingly difficult and costly in terms of time and
network traffic. Processing a query naively (by simply contacting the nodes re-
sponsible for the requested measurements) is very expensive, as we will demon-
strate in our experiments. If kept unchecked, network activities caused by the
queries could interfere with normal operations and lead to unintended artifacts
in performance-related measurement values. These problems are exacerbated by
periodic monitoring queries, by queries that request measurements from a large
number of nodes, and by queries that return a large result set.

We seek to develop a better infrastructure for distributed network querying,
by exploiting optimization opportunities that naturally arise in our target appli-
cations: (1) Approximation: For most network monitoring and resource querying
applications, exact answers are not needed. Approximate values will suffice as
long as the degree of inaccuracy is quantified and reported, and the user can
control the degree of inaccuracy. Small errors usually have little bearing on how
measurements are interpreted and used by these applications; at any rate, these
applications already cope with errors that are inevitable due to the stochastic
nature of measurements. (2) Locality: Many types of localities may be naturally
present in queries. There is temporal locality in periodic monitoring queries and
queries for popular resources. There may also be spatial locality among nodes
that query the same measurements; for example, a cluster of nodes run similar
client tasks that each check the load on a set of remote servers to decide which
server to send their requests. Finally, there may be spatial locality among mea-
surements requested by a query; for example, a network administrator monitors
a cluster of nodes, which are close to each other in the network.

We have built a distributed querying infrastructure that exploits the opti-
mization opportunities discussed above. The first opportunity can be exploited
by bounded approximate caching [10] of measurement values. To ensure the qual-
ity of approximation, the system actively updates a cache whenever the actual
value falls outside a prescribed bound around the cached value. The effectiveness
of bounded approximate caching has been well established [10]. In this paper, we
focus on developing efficient and scalable techniques to place, locate, and manage
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bounded approximate caches across a large network, so that locality, the second
opportunity mentioned above, is also exploited in an effective manner.

The naive approach is to cache queried measurements just at the querying
node. Unfortunately, this approach is not very effective in our setting. First,
queries from other nodes have no efficient way of locating these caches. Second,
bounded approximate caches are more expensive to maintain than regular caches,
because nodes with the original measurements must actively update bounded
approximate caches when their bounds are violated. For regular caches, because
of low cache maintenance overhead, one can take an aggressive approach of
caching every miss and discard it later if it turns out to be not beneficial. The
naive approach may well work if such an aggressive approach is feasible. However,
we do not have such luxury for bounded approximate caching; we must carefully
weigh its cost and benefit before deciding to cache a measurement, because of
the costs incurred in establishing, maintaining, and tearing down a bounded
approximate cache. With the naive approach of caching only at the querying
node, since caching only benefits the querying node itself, it is unlikely that this
benefit will outweigh the cost of caching.

Therefore, we need to find an effective way to aggregate the benefits of caching
by making caches easier to locate and more accessible to querying nodes. We
would also like to exploit locality in query workload by encouraging the same
node to cache measurements that are frequently queried together, and by encour-
aging a measurement to be cached close to nodes that are querying it. Moreover,
we need to base our caching decision on a cost/benefit analysis that seeks to
minimize the overall foreground traffic (for queries) and background traffic (for
cache updates and maintaining statistics for caching decisions) in the system. Ac-
complishing these goals in a scalable manner, without relying on central servers
and access to global knowledge of the system, is a challenging task.

We have developed two approaches. The first approach uses a recursive parti-
tioning of the network space to place caches in a static, controlled manner, and
is described briefly in Section 2. The second approach (described in Section 3)
uses a distributed hash table (DHT) such as [14] to place caches in a scalable,
dynamic and decentralized manner. Both approaches are designed to capture var-
ious forms of locality in queries to improve performance. We show how to make
intelligent caching decisions using a cost/benefit analysis, and we show how to
collect statistics necessary for making such decisions with minimum overhead.
Using experiments running on ModelNet [16], a scalable Internet emulation en-
vironment, we show in Section 4 that our solution significantly reduces query
costs while incurring low amounts of background traffic; it is also able to exploit
localities in the query workload and adapt to volatility of measurements.

Although we focus on network monitoring and distributed resource querying
as motivation for our work, our techniques can be adapted for use by many other
interesting applications. In [3], we briefly describe how to generalize the notion
of a “query region” from one in the network space to one in a semantic space.
For example, a user might create a live bookmark of top ten Internet discussion
forums about country music, approximately ranked according to some popularity
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measure (e.g., total number of posts and/or reads during the past three hours),
and have this bookmark refreshed every five minutes using a periodic query.
In this case, the query region is “discussion forums about country music,” and
the popularity measurements of these sites are requested. Generalization would
allow our system to select a few nodes to cache all data needed to compute
this bookmark, and periodic queries from users with similar bookmarks will be
automatically directed to these caches.

2 System Overview

Data and queries. Our system consists of a collection of nodes over a network.
Each node monitors various numerical quantities, such as the CPU load and the
amount of free memory on the node, or the latency and available bandwidth
between this and another node. These quantities can be either actively mea-
sured or passively observed from normal system and network activities. We call
these quantities measurements, and the node responsible for monitoring them
the owner of these measurements.

A query can be issued at any node for any set of measurements over the
network. The term query region refers to the set of nodes that own the set of
measurements requested. Our system allows a query to define its region either
by listing its member nodes explicitly, or by describing it semantically, e.g., all
nodes in some local-area network, or all nodes running public HTTP servers. By
the manner in which it is defined and used, a query region often exhibits locality
in some space, e.g., one in which nodes are clustered according to their proximity
in the network, or one in which nodes are clustered according to the applications
they run. For now, we will concentrate on the case where regions exhibit locality
in terms of network proximity, which is common in practice. In [3], we briefly
discuss how to handle locality in other spaces.

For a query that simply requests a set of measurements from a region, the re-
sult consists of the values of these measurements. Our system allows a query to
specify an error bound [−δ−q , δ+

q ]; a stale measurement value can be returned
in the result as long as the system can guarantee that the “current” mea-
surement value (taking network delay into account) lies within the specified
error bound around the value returned. To be more precise, suppose that the
current time is tcurr and the result contains a measurement value vt0 taken
at time t0. The system guarantees that vt, the value of the measurement as
monitored by its owner at time t, falls within [vt0 − δ−q , vt0 + δ+

q ] for any time
t ∈ [t0, tcurr − lag ], where lag is the maximum network delay from the querying
node to the owner of the measurement (under the routing scheme used by the
system). More discussion on the consistency of query results in our system can
be found in [3].

Beyond simple queries, our system also supports queries involving relational
selections or joins over bounded approximate measurement values. Results of
such queries may contain “may-be” as well as “must-be” answers. The details of
the query language and its semantics are beyond the scope of this paper.
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Bounded approximate caching. As discussed in Section 1, the brute-force
approach of contacting each owner to obtain measurement values is unnecessary,
expensive, and can cause interference with measurements. Caching is a natural
and effective solution but classic caching is unable to bound the error in stale
cached values. Instead, we use bounded approximate caching, where bounds on
cached measurement values are actively maintained by the measurement owners
(directly or indirectly).

The owner (or a cache) of a measurement is referred to as a cache provider
(with respect to that measurement) if it is responsible for maintaining one or
more other caches, called child caches, of that measurement. Each cache entry
contains, among other information, the cached measurement value and a bound
[−δ−, δ+]. A cache provider maintains a list of guarantee entries, one for each of
its child caches. A guarantee entry mirrors the information contained in the cor-
responding child cache entry, and is used to ensure that the guaranteed bounds
of child caches are maintained. We require the bound of a child cache to contain
the bound of its provider cache.

Whenever the measurement value at a cache provider changes, it checks to see
if any of its child caches need to be updated with a new value and bound. If yes,
the provider notifies the affected child caches. The cache entries at these child
caches and the guarantee entry at the provider are updated accordingly. This
process continues from each provider to its child caches until we have contacted
all the caches that need to be updated. This update of bounded approximate
caches is similar to the update dissemination techniques described in [15]. We
use a timeout mechanism to handle network failures (see [3] for details).

The choice of bounds is up to the application issuing queries. Tighter bounds
provide better accuracy, but may cause more update traffic. There are sophisti-
cated techniques for setting bounds dynamically and adaptively (e.g., [11]); such
techniques are largely orthogonal to the contributions of this paper. Here, we
focus on techniques for selecting bounded approximate caches to exploit locality
and the tradeoff between query and update traffic, and for locating these caches
quickly and efficiently to answer queries. These techniques are outlined next.

Selecting and locating caches. We have developed two approaches to select-
ing and locating caches in the network. The first is a controlled caching approach
and is described in [3]. The idea is to use a coordinate space such as the one
proposed by Global Network Positioning (GNP) [9] for all nodes in the network,
and perform controlled caching based on a hierarchical partitioning of the GNP
space. Each owner preselects a number of nodes as its potential caches, such that
nearby owners have a good probability of selecting the same node for caching,
allowing queries to obtain cached values of measurements in large regions from
fewer nodes. The selection scheme also ensures that no single node is responsible
for caching too many measurements, and that the caches are denser near the
owner and sparser farther away; therefore, queries from nearby nodes get better
performance. We show in [3] that this approach does quite well compared to the
naive approach of contacting the node responsible for the requested measure-
ments. This approach, however, exploits some but not all types of locality that
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we would like to exploit and also restricts the amount of caching at any node by
design. There is also a concern of scalability because some nodes carry poten-
tially much higher load than other nodes. Nevertheless, because of its simplicity,
the GNP-based approach is still viable for small- to medium-sized systems.

This led us to develop a new approach which has a number of advantages
over the first one and is the focus of this paper. This second approach uses
a locality-aware DHT to achieve locality- and workload-aware caching in an
adaptive manner. Not only do nearby owners tend to select the same nodes for
caching (as in the controlled approach), queries issued from nearby nodes for
the same measurements also encourage caching near the querying nodes. With
the use of a DHT, the system is also more decentralized than in the controlled
approach. We use DHTs because the technology scales to a large number of
nodes, the amount of state at each node is limited, it uses no centralized directory,
and it copes well with changing network conditions. The downside is a lesser
degree of control in exploiting locality, and more complex protocols to avoid
centralization. This approach is presented next.

3 DHT-Based Adaptive Caching

Background on DHTs. An overlay network is a distributed system whose
nodes establish logical neighbor relationships with some subset of global partic-
ipants, forming a logical network overlayed atop the IP substrate. One type of
overlay network is a Distributed Hash Table (DHT ). As the name implies, a DHT
provides a hash table abstraction over the participating nodes. Nodes in a DHT
store data items; each data item is identified by a unique key. An overlay routing
scheme delivers requests for a key to the node responsible for storing the data
item with that key. Routing proceeds in multiple hops and is done without any
global knowledge: Each node maintains only a small set of neighbors, and routes
messages to the neighbor that is in some sense “closest” to the destination.

Pastry [14] is a popular DHT that takes network proximity into account while
routing messages. A number of properties of Pastry are relevant to our system.
The short-hops-first property, a result of locality-aware routing, says that the
expected distance traveled by a message during each successive routing step
increases exponentially. The short-routes property says that the average distance
traveled by a Pastry message is within a small factor of the network distance
between the message’s source and destination. The route-convergence property
concerns the distance traveled by two messages sent to the same key before their
routes converge. Studies [14] show that this distance is roughly the same as the
distance between the two source nodes. These properties provide us a natural
way to aggregate messages originated from close-by nodes.

Overview of caching with pastry. Our basic idea is to leverage a locality-
aware DHT such as Pastry in building a caching infrastructure where two types of
aggregation naturally take place. One type of aggregation happens on the owner
side: Close-by owners select same caching nodes nearby, allowing us to exploit
the spatial locality of measurements involved in region-based queries. The other
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type of aggregation happens on the querying node side: Close-by querying nodes
can also find common caches nearby, allowing us to exploit the spatial locality
among querying nodes.

Suppose that all nodes route towards a randomly selected root using Pastry.
The Pastry routes naturally form a tree T (with bidirectional edges) exhibiting
both types of aggregation, as illustrated in Figure 1. Queries first flow up the
tree following normal (forward) Pastry routes, and then down to owners following
reverse Pastry routes. Nodes along these routes are natural candidates for caches.
Our system grows and shrinks the set of caches based on demand, according to a
cost/benefit analysis using only locally maintained information. The operational
details of our system are presented next. We do not discuss cache updates because
the process is similar to that described in Section 2 (see [3] for details).

Initialization. A primary objective of the initialization phase is to build the
structure T . While Pastry itself already maintains the upward edges (forward
Pastry hops), our system still needs to maintain the downward edges (reverse
Pastry hops). To this end, every node in T maintains, for each of its child
subtree in T , a representation of the set of nodes found in that subtree, which
we call a subtree filter. Subtree filters are used to forward messages on reverse
Pastry paths, as we will discuss later in connection with querying. Nodes at
lower levels can afford to maintain accurate subtree filters because the subtrees
are small. Nodes at higher levels, on the other hand, maintain lossy subtree
filters implemented with Bloom filters [1].

During the initialization phase, after the overlay network has been formed,
each node in the system sends an INIT message containing its IP address towards
the root. Each node along the path of this message adds the node IP to the
subtree filter associated with the previous hop on the path. As an optimization,
a node can combine multiple INIT messages received from its children into a
single INIT message (containing the union of all IP addresses in the messages
being combined), and then forward it.

Querying. When a query is issued for a set of measurements, the querying node
routes a READ message towards the root via Pastry. This message contains the
IP address of the querying node and the set of measurements requested (along
with acceptable bounds). When a node N receives a READ message, it checks to

Fig. 1. Two-way aggregation with Pastry Fig. 2. Splicing: add/remove a cache
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see if it can provide any subset of the measurements requested. If yes, N sends
back to the querying node a READ REPLY message containing these measurement
values (with cached bounds and timestamp, if applicable). If all requested mea-
surements have been obtained, we are done. Otherwise, let O denote the set
of nodes that own the remaining measurements. N checks each of its subtree
filters Fi: If O ∩ Fi �= ∅, N forwards the READ message to its i-th child with the
remaining measurements owned by O ∩Fi (unless the READ message received by
N was sent from this child in the first place). Note that messages from N to
its children follow reverse Pastry routes. Finally, if the READ message received
by N was sent from a child (i.e., on a forward Pastry route), N also forwards
the READ message to its parent unless N is able to determine that all requested
measurements can be found at or below it.

As a concrete example, Figure 1 shows the flow of READ messages when node
N1 queries measurements owned by O1, O2, and O3, assuming that no caching
takes place. If node N2 happens to cache measurements owned by O1 and O2,
then messages 7 through 9 will be saved. It is possible to show that our system
attempts to route queries towards measurement owners over T in an optimal
manner. We do not discuss the effect of false positives in Bloom filters in this
paper; the reader is referred to [3] for details.

Adding and removing caches. Each node in our system has a cache controller
thread that periodically wakes up and makes caching decisions. We first describe
the procedures for adding and removing a cache of a measurement.

Suppose that a node N decides to start caching a particular measurement m.
Let Pm denote the first node that can be N ’s cache provider on the shortest
path from N to the owner of m in T . Let Cm denote the subset of Pm’s child
caches whose shortest paths to Pm go through N . An example of these nodes is
shown in Figure 2. After N caches m, we would like Pm to be responsible for
updating N , and N to take over the responsibility of updating Cm, as illustrated
in Figure 2 on the right. Note that at the beginning of this process, N does not
know what Pm or Cm is. To initiate the process, N sends a SPLICE IN message
over T , along the same path that a READ request for m would take. Forwarding
of this message stops when it reaches Pm, the first node who can be a cache
provider for m. We let each cache provider record the shortest incoming path
from each of its child caches; thus, Pm can easily determine the subset Cm of its
child caches by checking whether the recorded shortest paths from them to Pm

go through N . Then, Pm removes the guarantee entries and shortest paths for
Cm; also, Pm adds N to its guarantee list and records the shortest path from
N to Pm. Next, Pm sends back to N a SPLICE IN OK message containing the
current measurement value and timestamp stored at Pm, as well as the removed
guarantee entries and shortest paths for Cm. Upon receiving this message, N
caches the measurement value, adds the guarantee entries to its guarantee list,
and records the shortest paths after truncating their suffixes beginning with N .
Finally, N sends out a SPLICE IN OK message to each node in Cm to inform it
of the change in cache provider. The cache removal procedure uses SPLICE OUT
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and SPLICE OUT OK messages. It is similar to cache addition and slightly simpler
(see [3] for a detailed description).

It can be shown that, in the absence of false positives in subtree filters, a
cache update originated from the owner would be sent over a minimal multicast
tree spanning all caches if update messages were routed over T .

Caching decisions. Periodically, the cache controller thread at N wakes up and
makes caching decisions. For each measurement m that N has information about,
the thread computes the benefit and cost of caching m. We break down the benefit
and cost of caching m into four components: (1) Bread(m) is the benefit in terms
of reduction in read traffic. For each READ message received by N requesting m,
if m is cached at N , we avoid the cost of forwarding the request for m, which will
be picked up eventually by the node that either owns m or caches m, and is the
closest such node on the shortest path from N to m’s owner in T . Let dm denote
the distance (as measured by the number of hops in T ) between N and this node.
The larger the distance, the greater the benefit. Thus, Bread(m) ∝ dm × Hm,
where Hm is the request rate of m at node N . (2) Bupd(m) is the net benefit in
terms of reduction in update traffic. It’s computation requires the maintenance
of a large number of parameters; hence we approximate it to be proportional to
the reduction in update cost from the cache provider Pm’s perspective (see [3] for
details). (3) Cupd(m) is the cost in terms of resources (processing, storage, and
bandwidth) incurred by N for maintaining its child caches for m. (4) Ccache(m) is
the cost incurred by N for caching m (other than Cupd (m)). We omit the details
of these last three components and refer the interested reader to [3].

Given a set M of candidate measurements to cache, the problem is to determine
a subset M′ ⊆ M that maximizes

∑
m∈M′

(
Bread(m) + Bupd(m)

)
subject to the

cost constraints that
∑

m∈M′ Cupd (m) ≤ Tupd , and
∑

m∈M′ Ccache(m) ≤ Tcache .
Here, Tupd specifies the maximum amount of resources that the node is willing to
spend on maintaining its child caches, andTcache specifies the maximum cache size.
This problem is an instance of the multi-constraint 0-1 knapsack problem. It is ex-
pensive to obtain the optimal solution because our constraints are not small inte-
gers; even the classic single-constraint 0-1 knapsack problem is NP-complete. So,
we use a greedy algorithm by defining the pseudo-utility of caching m as

Bread(m) + Bupd(m)
Cupd(m)/Tupd + Ccache(m)/Tcache

.

It is basically a benefit/weighted-cost ratio of caching m. The greedy algorithm
simply decides to cache measurements with highest, non-negative pseudo-utility
values above some threshold. Caches are added and removed as described earlier.

Maintaining statistics. We now turn to the problem of maintaining statistics
needed for making caching decisions. For measurements currently being cached
by N , we can easily maintain all necessary statistics with negligible overhead by
piggybacking the statistics on various messages. A more challenging problem
is how to maintain statistics for a measurement m that is not currently cached
at N . Maintaining statistics for all measurements in the system is simply not
scalable. Ignoring uncached measurements is not an option either, because we
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would be unable to identify good candidates among them. In classic caching,
any miss will cause an item to be cached; if it later turns out that caching is
not worthwhile, the item will be dropped. However, this simple approach does
not work well for our system because the penalty of making a wrong decision
is higher: Our caches must be actively maintained, and the cost of adding and
removing caches is not negligible.

Fortunately, from the cost/benefit analysis, we observe that a measurement
m is worth caching at N only if N sees a lot of read requests for m or there are a
number of frequently updated caches that could use N as an intermediary. Hence,
we focus on monitoring statistics for these measurements, over each observation
period of a tunable duration. For example, the request rate Hm is maintained
by N for each m requested during the observation period; request rates for
unrequested, uncached measurements are assumed to be 0. Our techniques to
estimate update rates and dm over the observation period are more complex.
More details on scalable maintenance of statistics are described in [3].

Overall, the space needed to maintain statistics for uncached measurements
is linear in the total number of measurements requested plus the total number
of downstream caches updated during an observation period. Thus, the amount
of required space can be controlled by adjusting the observation period length.

4 Experiments and Results

Experimental setup. We have implemented the GNP- and the DHT-based ap-
proaches. We conduct our experiments over ModelNet [16], a scalable and highly
accurate Internet emulation environment. We emulate 20,000-node INET [4]
topologies with a subset of nodes participating in measurement and querying
activities. We report results for subsets with 250 nodes acting as both owners
and querying nodes. These nodes are emulated by twenty 2.0GHz Intel Pentium
4 edge emulation nodes running Linux 2.4.27. All traffic passes through a 1.4GHz
Pentium III core emulation node running FreeBSD-4.9.

While all results in this paper use an emulated network, we have also deployed
our system (with around 50 nodes) over PlanetLab [12]. Note that the number
of owners and querying nodes in our experiments is not constrained by the
system’s scalability, but rather by the hardware resources available for deploying
it over an emulated network. The advantage of deploying a full system over an
emulated network is that it ensures that all costs are captured and we do not
inadvertently miss out any important effects or interactions. As future work, we
plan to develop a simpler simulation-based evaluation, which would allow us to
demonstrate larger experiments at the expense of some realism.

Workloads. We wish to subject our system to workloads with different char-
acteristics that may represent different application scenarios. To this end, we
have designed a workload generator to produce a mix of four basic types of
“query groups.” The four types of query groups are: (1) Near-query-near- owner
(NQNO): A set of nq nearby nodes query the same set of no owners that are
near one another (not necessarily close to the querying nodes). This group should
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benefit most from caching, since there is locality among both querying nodes and
queried owners. (2) Near-query-far-owner (NQFO): A set of nq nearby nodes
query the same set of no owners that are randomly scattered in the network.
There is good locality among the querying nodes, but no locality among the
queried owners. (3) Far-query-near-owner (FQNO): A set of nq distant nodes
query the same set of no owners that are near one another. This group exhibits
good locality among the queried owners, but no locality among the querying
nodes. (4) Far-query-far-owner (FQFO): A set of nq nodes query the same set
of no owners; both the querying nodes and the queried owners are randomly
scattered. This group should benefit least from caching.

A workload [a, b, c, d] denotes a mix of a NQNO query groups, b NQFO query
groups, c FQNO query groups, and d FQFO query groups. All query groups are
generated independently. Each workload is further parameterized by nq and no,
the number and the size of queries in each group, and p, the period at which the
queries will be reissued.

In this paper, we experiment with synthetic measurements, each generated by
a random walk where each step is drawn from a normal distribution with mean
0 and standard deviation σ. If σ is large, bounds on this measurement will be vi-
olated more frequently, resulting in higher update cost. Synthetic measurements
allow us to experiment with different update characteristics easily. Experiments
with real node-to-node latency measurements demonstrate the effectiveness of
bounded approximate caching, and are presented in [3].

4.1 Results for the DHT-Based Approach

Advantage of caching. To demonstrate the advantage of caching, we run a
workload W1 = [1, 1, 1, 1] for 1000 seconds, with nq = 4, no = 10, and p = 16 sec-
onds. Effectively, during each 16-second interval, there are a total of 16 nodes
querying a total of 40 owners, with each query requesting 10 measurements. This
workload represents an equal mix of all four types of query groups, with some
benefiting more than others from caching. The measurements in this experiment
are synthetic, with σ = 7. Bounds requested by all queries are [−10, 10]. Dur-
ing the experiment, we record both foreground traffic, consisting of READ and
READ REPLY messages, and background traffic, consisting of all other messages
including splice messages and CACHE UPDATE messages.

Figure 3 shows the behavior of our system over time, with the size of each
cache capped at 100 measurements (large enough to capture the working set
of W1). We also show the behavior of the system with caching turned off. The
message rate shown on the vertical axes is the average number of messages
per second generated by the entire system over the last 16 seconds (same as
the period of monitoring queries). From Figure 3, for cache size 100 we see
that after a burst of foreground traffic when queries start running, there is an
increase in the background traffic as nodes decide to cache measurements. Once
caches have been established, the foreground traffic falls dramatically due to
the caches. As the set of caches in system stabilizes, the background traffic also
reduces to mostly CACHE UPDATE messages. On the other hand, with caching
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Fig. 3. Traffic vs. time Fig. 4. Traffic vs. cache size Fig. 5. Adapt to volatility

turned off (cache size 0) we see that the foreground traffic remains very high at
all times (there is no background traffic). The high foreground traffic outweighs
the benefit of having no background traffic. In sum, caching is extremely effective
in reducing the overall traffic in the system.

Figure 4 compares the performance of the system under different cache sizes
(in terms of the maximum number of measurements allowed in the cache of each
node). We show the total number of foreground and background messages gen-
erated by the system over the length of the entire experiment (1000 seconds). As
the cache size increases, the overall traffic decreases, although the benefit dimin-
ishes once the caches have grown large enough to hold the working set. Another
interesting phenomenon is that for very small cache sizes, the background traffic
is relatively high because of more splice operations caused by thrashing. Never-
theless, our system is able to handle this situation well.

Adapting to volatility in measurements. In this experiment, we use the
same workload W1 with cache size 100. We gradually increase the volatility of
measurements by increasing the standard deviation σ of the random walk steps
every 500 seconds. For the requested query bound of [−10, 10], we effectively
increase the update rate from 0.0 to 3.0 updates per second. The result of this
experiment is shown in Figure 5. Initially, with a zero update rate, there is
no cost to maintaining a cache, so all frequently requested measurements are
cached, resulting in low foreground and background traffic. As we increase the
update rate, however, the background traffic increases. This increase in cache
update cost causes nodes to start dropping cached measurements; as a result,
the foreground traffic also increases. Eventually, the update rate becomes so high
that it is no longer beneficial to cache any measurements. Thus, the background
traffic drops to zero, while the foreground traffic increases to the level when there
is no caching (cf. Figure 3). To summarize, our system only performs caching if it
leads to an overall reduction in total traffic; consequently, the total traffic in the
system never rises above the level without caching. This shows that our system
is able to adapt its caching strategy based on the volatility of measurements.

Aggregation effects. The next two sets of experiments demonstrate that our
system can exploit locality in both querying nodes and queried owners. To illus-
trate aggregation on the querying node side, we perform a series of experiments
using five workloads, [0, 0, 2, 2], [1, 0, 2, 1], [2, 0, 2, 0], [2, 1, 0, 1], and [2, 2, 0, 0],
where the percentage of queries issued from nearby nodes increases from 0% to
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Fig. 6. Traffic vs.
percentage of queries
from nearby nodes.

Fig. 7. Traffic vs.
percentage of queries
to nearby owners.

Fig. 8. Comparison
of average query la-
tency.

Fig. 9. Comparison
of total traffic.

100%. We set nq = 5 and no = 4 for these five workloads. From the results in
Figure 6, we see that the total traffic reduces as the percentage of queries from
nearby nodes increases. Figure 7 shows the second set of experiments that il-
lustrate owner-side aggregation by using five workloads where the percentage of
queries requesting nearby owners increases from 0% to 100%. We again see that
the total traffic reduces as the percentage of queries requesting nearby owners
increases. These experiments show that our system derives performance benefits
by exploiting locality both among querying nodes and in query regions.

Comparison with the naive and GNP approaches. Figure 8 compares the
average query latency (as measured by the average time it takes to obtain the
requested measurement, after all caches have been created) for a simple workload
that exhibits locality among querying nodes. For baseline comparison, we also
measure the average query latency of a naive approach, where each querying
node simply contacts the owner directly for the measurement. From the figure,
we see that the DHT-based approach has the lowest query latency, while the
GNP-based approach performs a little worse, but both outperform the naive
approach. Figure 9 compares the total network traffic generated by the system
while processing a workload in which five querying nodes repeatedly query a
faraway set of 12 nearby owners over 480 seconds, using the naive, GNP-based,
and DHT-based approaches. Again, the DHT-based approach outperforms the
other two approaches as it exploits querying node side locality effectively.

5 Related Work

Network monitoring. A large number of network monitoring systems have
been developed by both the research community and commercial vendors. As-
trolabe [17] is a system that continuously monitors the state of a collection
of distributed resources and reports summarized information to the its users.
Ganglia [8] is a system for monitoring a federation of clusters. While our work
also considers the network monitoring problem, we focus on supporting set-
valued queries approximately rather than aggregation queries. Our approach of
bounded approximate caching and methods for locality-aware, cost-based cache
management offer better flexibility and adaptability than these systems, which
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are preset to either push or pull each piece of information. Our techniques can
be used to enhance these and other existing network monitoring systems.

Data processing on overlay networks. PIER [7] is a DHT-based massively
distributed query engine that brings database query processing facilities to new,
widely distributed environments. For network monitoring, also one of PIER’s
target applications, we believe that bounded approximate caching meshes well
with PIER’s relaxed consistency requirement, and our DHT-based caching tech-
niques can also be applied to PIER. Locality-aware DHTs have been used to
build SCRIBE [2], a scalable multicast system, and SDIMS [18], a hierarchical
aggregation infrastructure. Our DHT-based approach also uses a locality-aware
DHT, but for the different purpose of selecting and locating caches; in addition,
we use reverse DHT routes to achieve aggregation effects on the owner side.

Approximate query processing for networked data. The idea of bounded
approximate caching has been explored in detail by Olston [10], along with tech-
niques such as adaptive bound setting, source cooperation in cache synchroniza-
tion, etc. We apply bounded approximate caching in this paper, but we focus
on how to select caches across the network to exploit locality, and how to lo-
cate these caches quickly and efficiently to answer queries. We also extend the
approximate replication scheme by allowing guarantees to be provided not only
by the owner, but also by any other cache with a tighter bound.

Web caching and web replication. Web caching [13] is often done by ISPs
using web proxy servers. Web replication [13] refers to data sources spreading
their content across the network, primarily for load balancing. In both cases,
the cache content is stored exactly and most often relatively stable content (e.g.
images) is replicated at static locations. They do not deal with the problem of
rapidly updating data; this means that they can afford to establish a large num-
ber of caches/replicas. Our system deals with replication of dynamic measure-
ments and therefore update costs are high. We reduce update costs by caching
bounded measurements, and balance update and query costs by caching at dy-
namically chosen nodes in the network.

6 Conclusions

In this paper, we tackle the problem of querying distributed network measure-
ments, with an emphasis on supporting set-valued queries using bounded ap-
proximate caching of individual measurements. We focus on efficient and scalable
techniques for selecting, locating, and managing caches across the network to ex-
ploit locality in queries and tradeoff between query and update traffic. We have
proposed, implemented, and evaluated a DHT-based adaptive caching approach
and compared it with a GNP-based controlled caching approach. Experiments
over a large-scale emulated network show that our caching techniques are very
effective in reducing communication costs and query latencies while maintaining
the accuracy of query results at an acceptable level. The DHT-based approach
is shown to adapt well to different types of workloads. In addition to temporal
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locality in the query workload, the approach is able to exploit spatial localities
in both querying nodes and measurements accessed by region-based queries.

Although the results are promising, techniques described in this paper repre-
sent only the first steps towards building a powerful distributed network querying
system. As future work, we plan to investigate the hybrid approach of combin-
ing query shipping and data shipping, and consider more sophisticated caching
schemes such as semantic caching [5].
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