
On Suspending and Resuming Dataflows

Duke Database Group

Badrish Chandramouli, Chris Bond, Shivnath Babu, and Jun Yang

badrish@cs.duke.edu
shivnath@cs.duke.edu

chrisbond@google.com
junyang@cs.duke.edu

High-priority Task
- Process as quickly as possible
- Ideally with all available resources
- E.g., real time decision queries

Low-priority Query
- Lots of resources, especially memory
- Extremely long runtime
- E.g., analytical (OLAP) queries

Active checkpoint

Scenario

When a high-priority task arrives
- Suspend the low-priority query quickly

Complete the high priority task

Contracting Mechanism
- Asynchronous checkpointing itself is insufficient

- Child needs to be able to regenerate operator state at resume
- Contract: agreement by child to regenerate tuples from an old point

- Signed between parent and child, at parent’s MHS point
State

Simple Solutions
Kill and Restart
- Wastes time and resources
- Starves low-priority task

Use renice Command
- Ineffective controls CPU only

L ti t l

Dump to Disk
- High suspend-time overhead
- High-priority task cannot wait

Synchronous Checkpointing
- Dump entire execution state periodically

Time

NLJ0

NLJ1

- Remembering latest checkpoint for each operator is insufficient
- But, each operator has to retain only O(h) active checkpoints

- Contract graph stores active checkpoints/contracts: O(nh) space
(n: number of operators in plan, h: height of query plan tree)

Inactive contract

Active contract

Inactive checkpoint
- Complete the high-priority task
- Resume the low-priority query

Applications of Suspend/Resume
- Queries with different priorities
- Utility and Grid settings

- Long time to release resources

Limit Allocated Resources
- Unnecessary restriction, may be infeasible

Dump entire execution state periodically
high overhead during execution

- Slow resume should redo all the work
done since last checkpoint

Suspend request

Execute

- Constrained optimization problem
- Choose strategy for each operator
DumpState (D) or GoBack (G)
- Some strategy combinations are invalid
Minimize total suspend/resume time

Asynchronous checkpointing
Build/maintain contract graph

MJ

Sort Sort

ScanUNLJ

NLJ Scan

G

G D

GG

D G

(p p , g q y p)
- Kept in memory: size is a few MB, even for hundreds of operators

Our Solution: A New Query Lifecycle
Choosing a Suspend Plan

Query Plan Suspend Plan

Resume

- Utility and Grid settings
- Software rejuvenation
- DBMS maintenance

Resume
request

p q

Suspend

Pick suspend plan
Populate SuspendedQuery
Write to disk

Read SuspendedQuery
Rebuild operator state

NLJ0
State

- Minimal Heap State (MHS) points of different operators usually do
not coincide in time synchronous checkpoints are expensive!

- Minimize total suspend/resume time
- Constrained suspend budget

- Have all needed statistics at suspend time

NLJ ScanS

Filter ScanT

ScanR

G

D G

G

Asynchronous Checkpointing

MHS point

Other Improvements
- Can often skip ahead from checkpoint to target state on resume:

no need to redo all the work
- Can migrate contracts to later points: more efficient resume

NLJ1 ScanT

ScanR ScanS

Block-based
NLJ plan

Time

NLJ0

NLJ1

- Implemented and
evaluated in
PREDATOR DBMS

10

20

30

40

50

O
ve

rh
ea

d
tim

e
(s

ec
s)

Total

Suspend

State snapshots
(outer buffers)

MHS point

Some Experimental Results
- The Query Optimizer can choose a suspend-aware query plan

all-DumpState: All operators choose DumpState
all-GoBack: All operators choose GoBack

li MIP S d l i i d i tNLJ0

NLJ1

NLJ0

NLJ1

NLJ0

NLJ1

NLJ0

NLJ1

NLJ0

NLJ1

0
all-DumpState all-GoBack online MIP

- Idea: Checkpoint each operator independently at its MHS point
negligible runtime overhead (no disk writes)

- At suspend, each operator has two choices: DumpState and GoBack
For more details: Badrish Chandramouli, Christopher N. Bond, Shivnath Babu, and Jun Yang.
Query Suspend and Resume. To appear in SIGMOD 2007.

- Requires minor extensions to the iterator interface
- Currently supports NLJ, SMJ, merge sort, filter, and table scan
- Can be extended to other operators, e.g., aggregation

online MIP: Suspend plan using mixed-integer program

