
On Suspending and Resuming Dataflows∗

Badrish Chandramouli
Duke University

Christopher N. Bond†

Google Inc.
Shivnath Babu

Duke University
Jun Yang

Duke University

1 Introduction
Consider a long-running, resource-intensive query Q run-
ning on a database management system (DBMS). Suppose
another task T with much higher priority arrives, and we
need to process T as quickly as possible and with all avail-
able resources. Ideally, the system should suspend the ex-
ecution of Q, quickly release all resources held by Q, and
start T using all resources. Query Q can be resumed once
T finishes execution, ideally without losing any significant
fraction of the work that Q had done prior to suspend.

Beyond supporting mixed-priority DBMS workloads,
suspend/resume of queries, or dataflows in general, is im-
portant in many other settings:
• Utility and Grid: Dataflows now run frequently on com-

putational utilities (e.g., Condor [3]) and Grids [4] com-
posed of autonomous resources. When the owner of re-
sources wants to use them, dataflows running on these
resources must release control quickly, and migrate to
other resources.

• Software rejuvenation: Benefits of software rejuvena-
tion [6], the practice of rebooting enterprise computing
systems regularly, are now recognized widely. Reboot is
critical when performance degrades due to resource ex-
haustion caused by resource leaks. Suspend and resume
is important in this setting because (1) the challenge
of predicting completion times accurately (e.g., see [9])
makes it difficult to schedule task completion to match a
rejuvenation schedule; (2) when performance degrades,
it may not be cost-effective to wait for all dataflows to
complete before rebooting.

Challenges and Contributions Killing and restarting
dataflows wastes time and resources, and can lead to star-
vation if suspend requests are common. For suspend and
resume, there are two well-known techniques. First, the
dataflow’s entire in-memory execution state can be dumped
to disk on suspend, and read back on resume, like an OS-
style process swap. While simple to implement, it can cause
high overhead during both suspend and resume, because

∗This work is supported by an NSF CAREER Award (IIS-0238386)
and by IBM Faculty Awards.

†Work performed when the author was at Duke University.

complex dataflows such as DBMS queries can easily carry
gigabytes of in-memory state in modern systems with large
memory. Second, the entire state can be checkpointed at
selected points during execution. Checkpointing minimizes
suspend-time overhead, but incurs overhead during execu-
tion and resumption. Although the general ideas of dump-
ing and checkpointing have been studied in various systems
(e.g., [8]), in this paper we tackle the problem of suspend-
ing and resuming complex dataflows consisting of operators
with well-understood semantics and behaviors; this addi-
tional knowledge introduces unique challenges and oppor-
tunities that have not been investigated previously. In par-
ticular, we focus on the context of suspending and resuming
query execution plans in a DBMS.

For example, consider the simple execution plan for
R ./ S ./ T consisting of two block-based nested loop joins
(NLJ) [5] and three table scans (see Figure 1). We may
checkpoint when NLJ0’s heap state (outer buffer) is empty,
to reduce checkpointing overhead. However, at this point
NLJ1 may have a full outer buffer. In general, different
operators may reach their minimal heap states at different
times, making traditional checkpointing very expensive. We
argue that operators should perform asynchronous indepen-
dent checkpointing, but this requires intricate support for
precise coordination.

Next, assume a suspend request is received. An operator
can choose between dumping its state or going back to a
previous checkpoint. In Figure 1, NLJ0 may prefer to write
out the few tuples in its outer buffer to disk. But, NLJ1

may prefer to go back to a checkpoint and reconstruct its
state. We argue that different strategies may be appropriate
for different operators. The ideal choice depends on the
runtime conditions at suspend time.

NLJ0
X

XX
�

��

NLJ1
aa!!

ScanR ScanS

ScanT

NLJ0

NLJ1

Outer

buffers

Cursor

Checkpoint here 

maps to very old 

checkpoint of 

child

Cursor

Figure 1. Physical plan & outer buffers.



We make the following contributions:
• Query suspend/resume. We propose a novel query life-

cycle for supporting suspend/resume.
• Semantics-driven asynchronous checkpointing. We

design strategies for individual plan operators to decide
independently when and how to checkpoint in-memory
state. We propose a novel low-overhead contract mech-
anism to coordinate independent checkpoints.

• Online selection of suspend/resume strategies. We
address the problem of choosing the optimal sus-
pend/resume strategy at suspend time to minimize to-
tal suspend/resume overhead given a maximum allowed
time to suspend.

• Planning ahead for suspend/resume. We show how
suspend/resume costs and requirements affect different
query plans, and motivate the advantage of “suspend-
friendly” query planning.

• Implementation. We show how our techniques can
be incorporated by a DBMS with iterator-based query
execution. We have implemented our techniques in
PREDATOR [11], and experiment results demonstrate
their benefits.

2 Overview of Our Approach
To support suspend/resume, we augment the standard exe-
cute phase of a query in a DBMS with two new phases—
suspend and resume. We address how to support the aug-
mented query lifecycle efficiently.
Compile Phase In this phase, the query optimizer chooses
a query plan. Planning could take suspend into account (see
Section 3), but our techniques are fully compatible with tra-
ditional query optimizers that produce standard plans.
Execute Phase Once the query optimizer chooses a query
plan for a query Q, Q enters its execute phase. We aug-
ment the execute phase as follows. First, every stateful op-
erator, when it has minimal heap state, performs indepen-
dent proactive checkpointing. For example, NLJ creates a
checkpoint each time its outer buffer is empty. This check-
point has very little associated state, and can be efficiently
retained in memory.

Checkpoints can restore an operator O’s state, but this is
not enough because O still needs its children to resume pro-
ducing input tuples for O immediately after the point where
the checkpoint was created. To address this problem, af-
ter creating a checkpoint, O will establish a contract with
each of its children. A contract is an agreement by the child
to (later) produce tuples from the point where the contract
was signed. Briefly, the child uses its own previous check-
point (and some information about its current state) to en-
sure ability to honor the contract. For instance, when NLJ1

in Figure 1 receives a contract request from NLJ0, it maps

the contract to its latest proactive checkpoint, and remem-
bers the current outer buffer cursor position.

Stateless operators instead use reactive checkpoint-
ing [2], done only when the parent requests a contract. We
use a graph data structure to keep track of the dependen-
cies among active checkpoints and contracts. The total size
of active checkpoints and contracts is small—only O(n2)
for a plan of n operators. We have also developed several
optimizations to make suspend/resume more efficient.
Suspend Phase Upon receiving a suspend request, Q en-
ters the suspend phase. Each operator in a query plan can
choose one of two strategies: GoBack, where the operator
writes out minimal state and uses a previous checkpoint to
resume, and DumpState, where the operator dumps its en-
tire state to disk. At suspend time, the DBMS chooses a sus-
pend plan for Q, which describes the strategy that will be
used to suspend each operator. For example, for the query
plan in Figure 1, the suspend plan might choose DumpState

for NLJ0 and GoBack for NLJ1. The suspend plan and the
necessary data to enable resumption are written out to disk
as a SuspendedQuery structure. After suspend, all of Q’s
memory resources can be released.
Resume Phase Q enters its resume phase when the DBMS
is ready to resume it. The goal of this phase is to use
the SuspendedQuery structure to reconstruct Q’s execution
state back to the suspend point, so that the execute phase
can continue where it was interrupted. Actions during re-
sume are dictated by the suspend plan used during suspend.
For example, if the in-memory state of an NLJ was dumped
to disk, we need to read it back into memory. If the NLJ
had chosen GoBack to an earlier checkpoint when its outer
buffer was empty, then at suspend, we need to ask its outer
child to honor the contract and regenerate the content of the
outer buffer.

3 Online and Compile-Time Optimization
Every operator needs to decide whether to choose the
DumpState or the GoBack strategy. Choosing GoBack of-
ten reduces, by orders of magnitude, the state to be written
to the disk at suspend time. The downside is a potentially
longer resume, because the discarded state needs to be re-
computed by the subplan. Given a suspend cost budget,
we address the constrained optimization problem that deter-
mines the optimal suspend plan with the lowest combined
suspend/resume cost. It is ideal to perform this optimization
at suspend time, because we have all correct statistics neces-
sary, and we know the exact position of each operator with
respect to its contracts and checkpoints. This optimization
can be formulated as a mixed-integer program with O(n2)
constraints for a plan with n operators [2]. In practice, we
find the optimization time to be negligible.

Some query plans perform better than others in the pres-



0

10

20

30

40

50

all-DumpState all-GoBack online

O
v
e
rh
e
a
d
 t
im
e
 (
s
e
c
s
)

Total Suspend

Figure 2. Comparison of approaches.
ence of suspends. We argue that if the plan is chosen with-
out any consideration of suspend/resume, the plan may be
suboptimal. If we know the expected suspend pattern, we
can choose a query plan tailored for such a situation. For
instance, a hybrid hash join (HHJ) usually outperforms a
sort-merge join (SMJ) in the absence of suspends. How-
ever, HHJ is more costly to suspend and resume because of
its in-memory hash table. Thus, SMJ can outperform HHJ
in the presence of suspends, and may be preferred if sus-
pends are expected (see [2] for the detailed example).

4 Sample Experiment Results
We implemented our techniques in PREDATOR [11], in-
cluding checkpointing and contracting, GoBack and Dump-

State suspend strategies, and the online suspend-plan opti-
mizer. In addition to our online optimization strategy, we
experiment with two suspend plans for comparison: (1) all-
DumpState, where all operators follow DumpState, and
(2) all-GoBack, where all operators perform checkpointing
and follow GoBack. In the experiment, we execute, sus-
pend, and resume a complex plan of 10 operators. The sus-
pend plan found by our optimizer is neither of the two ex-
tremes (all-GoBack and all-DumpState); it is a hybrid con-
sisting of different strategies for different operators. Fig-
ure 2 compares the performance of this plan against all-
GoBack and all-DumpState, in terms of total overhead (for
both suspend and resume) and suspend cost. We see that
the online approach using the hybrid suspend plan performs
much better than the purist techniques.

5 Related Work
Our techniques exploit the internal semantics of individual
operators to support efficient suspend/resume of complex
query plans in their entirety. To the best of our knowledge,
we know of no published work that addresses the same
problem at such a level. We briefly sample related work
here and refer the interested reader to [2].

Researchers have argued [13] for iterating between query
optimization and execution. Our work is not intended
to handle switching to a different plan after resume. At
the same time, plan-switching techniques designed for the
query reoptimization setting are generally inadequate for

query suspend/resume. Overall, we see our work as com-
plementary and orthogonal to such techniques [1, 10, 12].

Condor DAGMan [7] addresses failure recovery for an
application consisting of set of tasks with dependencies.
While it prevents application restart, it does not support re-
sumption at an intra-task level. Labio et al. [8] considers
resuming interrupted data warehouse loads, using logical
properties of black-box operators. Our physical approach
exposes more optimization opportunities and challenges,
and leads to more efficient resume.

6 Conclusion
Many applications benefit from support for suspending and
resuming dataflows on demand. This task is challenging
especially on modern systems, where dataflows often carry
large internal state during execution. We have proposed and
implemented a novel lifecycle that supports efficient sus-
pend and resume, taking full advantage of the semantics and
behavior of each dataflow operator. In the DBMS setting,
we have shown that our techniques add low overhead during
normal execution, offer much better suspend/resume perfor-
mance, and can operate under suspend cost constraints.

References
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adap-

tive Query Processing. In SIGMOD, 2000.
[2] B. Chandramouli, C. Bond, S. Babu, and J. Yang. On

Suspending and Resuming Queries. Technical report,
Duke University, July 2006. http://www.cs.duke.edu/

dbgroup/papers/2006-cbby-qresume.pdf.
[3] Condor Project. http://www.cs.wisc.edu/condor/.
[4] I. Foster and C. Kesselman. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann, 1999.
[5] H. Garcia-Molina, J. Ullman, and J. Widom. Database Sys-

tems: The Complete Book. Prentice Hall, 2002.
[6] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimiz-

ing Completion Time of a Program by Checkpointing and
Rejuvenation. In SIGMETRICS, 1996.

[7] J. Frey. Condor DAGMan: Handling Inter-Job Dependen-
cies. http://www.cs.wisc.edu/condor/dagman/.

[8] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik.
Efficient Resumption of Interrupted Warehouse Loads. In
SIGMOD, 2000.

[9] G. Luo, J. F. Naughton, C. Ellmann, and M. Watzke. To-
ward a Progress Indicator for Database Queries. In SIG-
MOD, 2004.

[10] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh,
and M. Cilimdzic. Robust Query Processing Through Pro-
gressive Optimization. In SIGMOD, 2004.

[11] P. Seshadri. PREDATOR: A Resource for Database Re-
search. In SIGMOD Record, 1998.

[12] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An Adaptive Partitioning Operator for Con-
tinuous Query Systems. In ICDE, 2003.

[13] M. Winslett. David DeWitt Speaks Out. In SIGMOD
Record, 2002.


