
Pushing the Envelope of Pervasive Access

Badrish Chandramouli*1, Hui Lei2, Kumar Bhaskaran, Henry Chang, Michael Dikun, Terry Heath
*Duke University, Durham, North Carolina 27708-0129

badrish@cs.duke.edu
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

{hlei, bha, hychang, mdikun, theath}@us.ibm.com

1 This work was performed while the author was visiting IBM Watson Research.
2 Correspondence author.

Abstract

This paper presents the design and implementation
of the Puma middleware system. Puma enables
pervasive access to Web applications from a wide
range of clients. In addition to traditional, browser-
equipped client devices such as laptops and PDAs,
Puma supports the use of peer collaboration tools
such as instant messengers, SMS devices, email
clients and telephones. While those collaboration
tools were initially intended for free-form interaction
between people, Puma leverages them for structured
interaction between people and computers in order to
offer more flexibility, convenience and intimacy to
end users. In addition to user-initiated, or pull-based,
interactions, Puma allows an application to
proactively push an interaction to a user, in a manner
sensitive to the application’s needs and the user’s
current context. Architecturally, Puma employs
various Modality Bots to mediate between application
servers and heterogeneous clients. The Modality Bots
also serve as the initial point of contact for
application-initiated interactions. As an experiment,
Puma has been used to mobilize the Human Tasks
Application, which supports the creation, processing,
and management of the manual steps in business
processes.

1. Introduction
The World-Wide Web has evolved into a

prominent infrastructure for the provisioning and
access of computer applications, thanks to the ubiquity
of the Web and widely-adopted technologies like
J2EE, JSP, and Struts. The so-called Web applications
are hosted on networked application servers and
interface with end users through Web browsers on
client devices. Web browsers and Web application
servers converse in HTTP, with the user interaction

model encoded in some presentation markup language
such as HTML.

Person mobility is an inherent part of everyday life.
It is highly desirable to allow users to access their
applications and data at any time, regardless of their
locations and the devices they use. Despite a long
history of research efforts, pervasive access remains a
very active research topic. It has gained even more
importance lately due to the rapid growth of the
mobile workforce and the deep penetration of
pervasive clients in the market [20, 21].

The Web application model bolts well with the
vision of pervasive application access because the
application state is completely maintained on the
server side. Many Web application servers are also
able to adapt the application interface to the
characteristics of the client device and represent the
resultant interface in a device-specific format such as
WML [22] and cHTML [23]. Nevertheless, the Web
application model requires that some form of browser
exist on the client device. Further, the Web is
fundamentally a pull technology. The user must
therefore explicitly initiate all interactions with the
application.

We have been investigating how to exploit peer
collaboration tools to extend the reach of mobile Web
applications. Various collaboration technologies –
including cell phones, email, instant messaging (IM),
the short message service (SMS), and pagers – have
emerged that people can use to interact with each
other even when they are on the move or far away.
Using collaboration tools as the interface to Web
applications eliminates the applications’ dependency
on Web browsers and thus allows applications to be
accessed even when a Web browser is not available.
Many built-in features of peer collaboration tools can
also be very handy for human-computer interaction.
For example, collaboration tools are capable of

receiving “calls”, which can be exploited by
applications to initiate and push an interaction to end
users. It is also conceivable to transfer an on-going
user interaction session to another device or to another
user, analogous to the way people transfer a phone call
today. Using the email modality, people may be able to
interact with applications in an asynchronous and
disconnectable fashion. Finally, the collaboration tools
allow for a hybrid interaction scenario, where the
server-side participant can be seamlessly switched
between a machine and a human being, without the
end user on the client-side taking any explicit action.

Enabling pervasive application access from
collaboration mechanisms presents a number of
challenges. First, collaboration tools were initially
designed for free-form, person-to-person interaction.
There is no native support for controlling or
structuring the messages being exchanged. The
interaction between the user and the application, on
the other hand, must be based on well-formed
messages and exchange sequences. Second,
collaboration mechanisms come in a large number of
varieties, and have widely varying capabilities. Such
client heterogeneity imposes the requirement for
target-specific user interfaces. In spite of the wide
spectrum of clients, the complexity of application
development must be under control. Third, although a
user typically has multiple collaboration mechanisms,
she may have access to only a subset of them at a
particular time. Depending on the circumstance, she
may also have a preference for which of the available
tools to use. Thus, there is a need to dynamically select
an appropriate tool to engage the user for a particular
interaction.

We have designed and implemented a Web
application extension framework, dubbed Puma3.
Puma provides pervasive access to Web applications
from a wide range of clients, including both Web
browsers and collaboration tools. In addition to user-
initiated, or pull-based, interactions, Puma allows an
application to proactively push an interaction to a
user, in a manner sensitive to the application’s needs
and the user’s current context. Puma employs various
Modality Bots to mediate between application servers
and collaboration clients. The Modality Bots interpret
UI specifications obtained from the application and
render them in a modality-appropriate fashion. They
also serve as the initial point of contact for
application-initiated interactions.

3 “Puma” stands for Push-enabled Mobile
Applications.

Puma is a successor of the PerCollab system [2, 3],
but differs in significant ways. PerCollab is
middleware that bridges workflow systems and peer
collaboration tools. It proactively engages users in
business processes by pushing the manual process
steps to a convenient collaboration mechanism of the
users. Puma generalizes that idea to enable pervasive
access to applications beyond workflow systems. Puma
also supports both push-based and pull-based
interactions, as opposed to push only in PerCollab.
While user interaction in PerCollab is based on a
simple message-exchanges model, Puma allows the
explicit handcrafting and customization of the UI,
which enables more contextual information to be
presented to the user and can result in a more friendly
UI.

To our knowledge, Puma is the first generic system
for accessing Web applications from arbitrary
collaboration modalities. It is also the first system that
offers the capability of application-initiated, two-way
interactions.

Next we discuss the considerations that influenced
the Puma design. We then present the salient aspects
of the system design and current implementation. We
report on our experience of using Puma to mobilize a
particular application – the Human Tasks Application.
Finally, we survey related work and close with a
summary of our ideas.

2. Design Rationale
The design of Puma is driven by four requirements:

support of application-initiated interactions, dynamic
selection of an appropriate interaction modality,
accommodation of heterogeneous clients, and
structured user interfaces on collaboration tools.

Traditionally user interactions with applications are
initiated by end users. Although this kind of
interaction model is appropriate for applications with
a short duration, it is not suitable for long-running
applications that can last days or even longer.
Examples of such long-running applications include
many business processes, activity management,
monitoring and surveillance. Constant user presence
in these applications is typically not necessary; neither
is it feasible. User involvement is needed only when
certain events happen and/or when the application
state satisfies a predefined condition. With a pull
approach, the burden is placed on the user to
periodically poll the application for the purpose of
determining whether her participation is required.
Needless to say, such an approach can be very
inefficient and may cause critical opportunity loss.

In comparison, a push-based approach allows the
application to engage a user at the right time by
proactively pushing an interaction session to the user.
This can substantially reduce the demand for user
attention and in the meantime promises to improve the
efficiency of the application. We advocate pushing
two-way interaction sessions to users and argue that
simply pushing a notification message may not be
adequate. Some applications compensate the
limitations of a pull approach by sending users a one-
way message on demand. The users can then start an
interaction session with the application, from a client
browser. In this case, the users have to make an extra
effort to switch from a messaging mechanism to a
browser. Still, there is no guarantee that a browser is
immediately available at the time the notification
message is received.

Intended as a generic Web application framework,
Puma supports both client-initiated and application-
initiated interactions. It allows interaction sessions to
be pushed to users’ collaboration tools, which all come
with a native receiving capability. Because Puma
integrates multiple collaboration modalities, it must
decide which of the collaboration modalities should be
used to push the interaction to. As people move from
place to place, their connectivity and accessibility to
various collaboration tools may change. Depending on
the circumstance, some types of tools may also be
more preferable than others. For example, if the user
is in a meeting, he may not want to receive any phone
calls. When he is giving a presentation, he may not
want to be interrupted by any instant messages.
Generally speaking, the best means of engaging a
particular person at a particular moment depends on
the person’s current context, such as the person’s
location, activity, connectivity and personal
preferences [24]. Therefore, Puma allows the
application to specify a modality policy that is
predicated on user context when pushing an
interaction. In addition, different modality policies can
be used in different sections of the application for
different interactions, reflecting the needs of the
application itself.

A fundamental challenge in mobile and pervasive
computing is creating and managing applications for a
large diversity of clients. Applications should be able
to render an interface on any client at the user’s
disposal. Given the wide range of device capabilities,
form factors, and user input and output methods, it is
unscalable for the application developers to create
interfaces for each possible kind of clients. Although
the use of collaboration tools adds to the disparity of
clients, fortunately many technologies developed to

tackle client heterogeneity remain applicable. Puma
has adopted some of the more mature solutions. The
applications in Puma are based on the Model-View-
Controller (MVC) design pattern [25]. The Model in
the MVC pattern encapsulates the business logic as
well as the business domain state knowledge. Each
View component within an application describes the
presentation and user interaction elements that
logically belong together. The Controller represents
the application flow, including the navigation between
the View components, validation of user requests, and
error handling. By associating clear and distinct
responsibilities with different components, the MVC
pattern maximizes the extensibility and reusability of
application components, which has proven effective in
reducing the complexity of application development.

Puma allows the View aspects of an application to
be represented in modality-independent format. The
modality-independent representation describes the
intent behind the user interaction rather than the
actual physical representation of UI controls. It is
rendered at runtime based on the characteristics of the
particular modality. The use of modality-independent
representation in fact serves two purposes. First, it
allows an application to capture the basic interaction
structures that can be reused across multiple devices
and modalities as appropriate. Second, it provides a
way to describe the structure and content of the user
interface for originally unstructured collaboration
modalities, without resorting to some home-grown or
modality-specific representation.

Further, Puma allows the layout and style of the
user interface to be manually customized to specific
client modalities if so desired, leading to highly
customized and usable interfaces.

3. System Design
In this section, we give an architectural overview of

Puma, followed by a discussion of the major system
components and system operations.

3.1. System Architecture
The Puma architecture is shown in Figure 1 (the

direction of arrows in the figure describes the flow of
control between components). The system
accommodates a diverse and extensible set of clients,
including conventional Web browsers and
collaboration tools. The collaboration tools are
integrated into the system via Modality Bots (e.g., IM
Bot, Email Bot, and Phone Bot). Each Modality Bot
connects one collaboration modality (e.g., IM, email
and phone) with Puma, controlling the user
interactions through that particular modality. The
Dispatcher serves as a single point of entry for user

requests from various clients. It interprets those
requests and routes them to corresponding
applications, based on navigation information
contained in the configuration file. The Pusher
component handles application-initiated user
interactions. It receives user interaction specifications
from applications and forwards them to appropriate
Modality Bots for the purpose of proactively engaging
users via a callable client (i.e., a collaboration tool).

3.2. Modality Bots
The Modality Bots allow disparate collaboration

modalities to be integrated into the system. Each
Modality Bot handles one category of collaboration
tools and is addressable in the network of the
corresponding modality. For example, the IM
Modality Bot is a user in the instant messaging
system. The user may start an instant messaging
session with the Modality Bot and send it various
messages. Similarly, the Phone Modality Bot may be
reached at a standard telephone number. The user
dials this number to use Puma.

A Modality Bot performs three kinds of functions.
First, it manages user interactions that go through
collaboration tools of a particular type. It receives one
view specification at a time and renders it in a
modality-specific manner. Depending on the modality,
the Bot may or may not need to establish a connection
with the collaboration tool before an interaction
session starts. Second, the Modality Bot acts as a Web
client and communicates with the Dispatcher. Each
request from the Modality Bot is a bundling or
composition of user input collected from the
collaboration tool. The response from the application

contains a new view specification. Third, the Modality
Bot receives descriptors of application-initiated
interactions via the Pusher. It obtains an initial view
specification through the Dispatcher so as to trigger an
interaction with the user on his collaboration tool.

It is possible that a Modality Bot may be
conducting multiple interaction sessions with an end
user at the same time. For example, one interaction
may be initiated by the user, while another one is
triggered by an application. Mingling messages from
different interactions can be very confusing to the
user. Depending on the modality, the Bot can handle
the situation in one of two ways. It can tag each
message with an interaction session ID or description
so that the user can correlate messages properly. Or it
can ban concurrent sessions altogether, requiring the
user to suspend or exit one session in order to enter
another.

The Modality Bots are architected as shown in
Figure 2. The Session Manager maintains all user
interaction sessions. Each session object
communicates with the application server via the
Server Communicator component. The modality-
independent view representation is handed off to the
Interaction Engine, which extracts low-level
presentation elements (e.g., labels and data) and
interaction elements (e.g., type-in fields or selection
lists) and passes them to the Rendering Engine. The
Rendering Engine is modality specific, and renders
the presentation and interaction elements
appropriately. The Rendering Engine uses the
Modality Controller to communicate with a user’s
collaboration tool.

3.3. Pusher
The architecture of the Pusher is shown in Figure

3. At the core of the Pusher is the Push Engine. The
Push Engine receives and validates descriptors of
application-initiated user interactions, determines the
appropriate collaboration tools for engaging the user
by consulting with the Modality Resolver and the

Figure 1: Puma Architecture

Dispatcher
Config

Pusher
Modality
Policies

Application 1 Application 2 ...

IM Bot

IM Server

Email Bot

Email
Server

Phone Bot

Phone
Gateway

...

Puma

IM Clients

Email

Clients
Phones

Web

Browsers

Figure 2: Modality Bot

Session
Manager

Interaction
Engine

Rendering
Engine

Modality
Controller

Server
Communicator

Address Resolver, and delivers the interaction
descriptors to the corresponding Modality Bots.

The Modality Resolver determines the proper
modalities given a user ID and a modality policy ID. A
modality policy may be predicated on temporal
attributes (e.g., time of day) and the user’s context
conditions (connectivity, location, current activity,
availability etc). In an extreme case, a modality policy
can simply enumerate applicable modalities without a
qualifying condition. There are two alternatives to the
representation of the modality policies. One
alternative is to represent each policy as a set of rules.
In this case, the Modality Resolver serves as an
interpreter of the policy rules. The other alternative is
to implement each policy as a Java class that
implements all the policy logic. The Modality
Resolver then instantiates and executes the Java object
for the specified policy.

The Context Service [6] is an infrastructure service
developed in an earlier project for gathering and
disseminating heterogeneous context information. It
allows the Modality Resolver to obtain user context
information without having to worry about the details
of context derivation and context management.
Information currently provided by the Context Service
includes IM online status, activities and contact means
derived from calendar entries, desktop activities, as
well as user locations reported from a variety of
sources such as cellular providers, wireless LANs,
GPS devices, and RIM blackberry devices.

The Address Resolver returns the modality-specific
address of a user, such as the user’s telephone number
or email address. Internally it uses a registry that
maintains the mappings from user IDs to their
modality-specific addresses.

3.4. User-Initiated Interaction
The sequence of a user-initiated interaction is

shown in Figure 4. We assume that the application is
constructed based on the MVC design pattern. The
client is supposed to be a connection-oriented
collaboration mechanism such as a telephone or an IM
client. Other clients work in a similar fashion. The
interaction consists of the following steps.

1. The user calls the Modality Bot from a
collaboration client.

2. The Modality Bot composes an HTTP request
based on user input and sends the request to the
Dispatcher.

3. The Dispatcher routes the request to the
appropriate application by calling the
application’s Controller.

4. The Controller invokes the business logic by
calling the Model component.

5. The Controller then forwards the control to an
appropriate View component.

6. The View component generates the initial view
markup and returns it to the Modality Bot.

7. The Modality Bot conducts a dialogue with the
user according to the view markup.

8. If the view markup contains elements for user
input, the Modality Bot bundles the user input in
another request and repeats Steps 2 to 7 (not
shown).

9. The user leaves the call with the Modality Bot.

It should be clear from the above action sequence
that the Modality Bot plays the role of a dual proxy.
To the server-side application, it acts like a Web client
and communicates with the application server in
standard HTTP. To users on a collaboration tool, on
the other hand, it represents the Web application and
appears as a peer on the modality-specific network of
collaborators.

3.5. Application-Initiated Interaction
Figure 5 shows the sequence diagram for a typical

application-initiated interaction. Again the client is
assumed to be a connection-oriented collaboration

Figure 3: Pusher

Modality
Resolver

Address
Resolver

Context
Service

Push

Engine

Figure 4: User-Initiated Interaction

Modality
Bot Client Controller Model

1. call

3. execute
2. request

4. invoke

5. forward 6. respond

7. prompt

8. reply

9. bye

View

Application

Dispatcher

mechanism. The interaction consists of the following
steps.

In Step 1, the business logic in the application
sends an interaction descriptor to the Push Engine,
along with the ID of the user that should be engaged,
and the ID of the applicable modality selection policy.
The interaction descriptor identifies the application
itself and the interaction parameters. In Step 2, the
Push Engine calls the Modality Resolver to determine
the appropriate modalities for the user. The Modality
Resolver optionally retrieves the user’ current context
from the Context Service (Step 3). The Push Engine
also calls the Address Resolver to obtain the modality-
specific addresses of the user (Step 4). It then delivers
the interaction descriptor to the corresponding
Modality Bots, along with the ID and the modality-
specific address of the user (Step 5).

Each Modality Bot contacted constructs an HTTP
request based on the information received and sends
the request to the Dispatcher (Step 6). The Dispatcher
processes the request in the same way as it processes a

user-initiated request, before it returns an appropriate
view to the Modality Bot (Steps 7–10). The Modality
Bots then calls the user in question to start a dialogue
(Step 11). It then mediates the traffic between the user
and the application as usual (Steps 12-13). When
either the view markup or the user indicates that no
further interaction is needed, the Modality Bot
terminates the call (Step 14).

Application-initiated interaction requests, like user-
initiated ones, are first sent to the Modality Bot. They
are then mapped to HTTP requests and eventually to
view markups via the same path of Dispatcher ->
Application Controller -> Model -> View. This allows
the existing Web application framework, which was
initially designed for pull-based interactions only, to
be retained for the new push-based interaction
paradigm. This in turn preserves prior investments in
the IT infrastructure and offers new application
capabilities without undue development efforts.

4. Implementation

Figure 5: Application-Initiated Interaction

Pusher

Modality Bot

Client Dispatcher Controller

Model

10. respond

14. bye

Push
Engine

Address
Resolver

Context
Service

Modality
Resolver

3. getContext 2. select

4. resolve

1. push

5. deliver

9. forward

6. request
7. execute

12. prompt
13. reply

View

11. call

Application

8. invoke

We have implemented a prototype of Puma on top
of the WebSphere Application Server (WAS) V5.0.1
[26]. The implementation is depicted in Figure 6. We
use the WebSphere Portal Server (WPS) V5.0.1 [4] as
the Dispatcher, which itself installs as an enterprise
application in WAS. WPS is chosen as the application
platform because it naturally supports the MVC
application model and heterogeneous client types.

The Pusher is implemented as a Web service in
WAS. It consists of three sub-components: the Push
Engine, the Modality Resolver and the Address
Resolver. The APIs for the sub-components are given
below:

- Push Engine:
void push(InteractionDescriptor id, UserID user,
 String modalityPolicyID);
- Modality Resolver:
Modality[] select (String modalityPolicyID,
 UserID user);
- Address Resolver:
Address resolve(UserID user, Modality modality);

The push() method on the Push Engine is exposed
in the Web service interface of the Pusher. Modality
policies are represented as Java classes in our system,
allowing flexible and expressive policies to be
specified. Each modality policy class implements the
following interface:

Interface ModalityPolicy {
 public Modality[] select(UserID user);
}

Puma uses XForms [1] for the modality-
independent representation of the View components of
an application. Although XForms is a modality-
independent language, the view it represents does not
have to be modality-independent. Using the WPS

framework, an application developer can adapt a view
to a particular modality by either supplying an XSLT
stylesheet to tailor the layout and style of the view, or
handcrafting a separate view for the modality. The
modality-specific view, still encoded in XForms, can
then be rendered by the corresponding Modality Bot.

The Modality Bot are implemented as bots on
IBM’s BotServer [27], which is a system that enables
the creation and administration of intelligent action
agents (i.e., bots) in various message-based
environments. Each Modality Bot is wrapped in a Web
service to facilitate invocation by the Push Engine.
The following method is exposed in the Web service
interface of each Modality Bot:

void deliver(InteractionDescriptor id, UserID user,
 Address clientAddress);

The current implementation includes Modality Bots
for email and Sametime instant messaging [8]. These
two modalities are selected for the initial
implementation because they have very different
characteristics: email is for asynchronous interaction
while IM is for synchronous interaction. In the rest of
this sub-section, we discuss the implementation details
of the Modality Bots.

When a new interaction session, which can be
requested by either a user or an application, is
established with the user, the Modality Bot creates a
new session object and executes it on a thread taken
from a pool of available threads. The session object
issues an HTTP GET request to the WPS application
and obtains the view to be rendered. The view is sent
in XHTML with embedded XForms and is extracted
from the application’s response. The XForms data is
then passed to the Interaction Engine (c.f. Figure 2).
The Interaction Engine builds upon the IBM XML
Forms package [5]. It loads the XForms, parses it, and
calls various writers to process the XForms elements
(e.g. input, output, select, switch). The writers are
common across all modalities and use a modality-
specific Rendering Engine to actually present the
elements. The writers populate the XForms instance
data based on user input. They also perform schema
validation and check for mandatory and relevant form
fields before populating the instance data. When the
form is to be submitted, the session object sends the
instance data to the application server in an HTTP
POST request along with the action. The application
responds with the next view in the interaction
sequence and the process repeats.

The Rendering Engine for email batches all
XForms elements of a view. It sends a single email to
the user at the end, prompting the user to fill in

Figure 6: Puma Implementation

…

ST
Bot

Email
Bot

Email
Bot
WS

Wrapper

Pusher
Web

Service
WebSphere Portal

Server

ST
Driver

Email
Driver

IM
Bot
WS

Wrapper

Bot Server

 WebSphere Application Server

various input fields. The email is sent via the email
communication driver, which is implemented using
the JavaMail API [12]. The session ID is embedded in
the email body, in order for the Rendering Engine to
correlate user replies. The input fields are also
numbered for correlating user input with form fields.
When the response is received, the data entered by the
user are sent to the appropriate writers. The same user
can be engaged in multiple sessions at the same time
with the application.

The Rendering Engine for Sametime instant
messaging is more interactive. It presents the XForms
elements as it receives them from the writers. User
input is immediately sent to the writers in order to
validate and update the instance data. In Sametime,
since there is only one chat window for each
correspondent, it would be confusing for the user to be
engaged in multiple interaction sessions concurrently,
as they would all be rendered in the single chat
window with the Sametime Bot. Hence, only one
session is allowed to be active. For example, if an
application-triggered interaction occurs while the user
is already in an active session, the Bot would inform
the user about the new session and give the user an
option to suspend or exit the current session and work
on the new session. When an active session is
finished, the user is presented with a menu of pending
sessions to switch into.

5. Experiment
In order to validate the design and implementation

of Puma, we have used Puma to mobilize a particular
application – the Human Tasks Application (HTA)
that is being developed by IBM’s product division.
HTA supports the creation, management and
processing of manual tasks. Such functionality is
useful for many business integration solutions and
business processes. The original HTA allows a task
participant to perform the following operations from a
Web browser:
• Query tasks: retrieve information on tasks

assigned to a participant
• Claim a task: gain exclusive ownership of an

assigned task.
• Process a task: obtain corresponding task input

data and provide task output data.
• Mark a task complete: declare completion of a

task to prevent further editing of task output data.
• Unclaim a task: release the task and have it

assigned to all potential participants again.
Our mobile extension of the HTA provides the

above functions on pervasive clients such as PDAs and
collaboration tools. In addition, it proactively pushes

newly assigned tasks to users by contacting them on
appropriate collaboration modalities.

As shown in Figure 7, the HTA consists of the
Human Task Manager (HTM) service, the task list
portlet, a collection of task processing portlets (one for
each type of human tasks defined), and a collection of
JSPs (one for each portlet). The HTM is the Model
part of the application, encapsulates the logic of
human task management and maintains the state of
human tasks. The portlets constitute the Controller
part of the applications, and the JSPs serve as the
View components.

The task list portlet queries the HTM for the user’s
tasks, and passes control to the corresponding JSP
which generates the XForms for operating on the list
of tasks. The XForms first shows a list of tasks
available to the user and allows the selection of a task
to work on. Once the task has been selected, it allows
the user to claim, unclaim, process, and mark
complete the selected task. If the user chooses to
claim, unclaim, or mark complete the task, the
requested action is performed by invoking the
corresponding HTM API call and the user is returned
back to the list of tasks. If the user chooses to process
a task, the control is passed to the relevant task
processing portlet.

There is one task processing portlet for each task in
the system. The task processing portlet interacts with
the HTM to retrieve task state and data, bundles data
into a Java bean, and passes control to the
corresponding JSP which generates the XForms
markup. The XForms layout may differ by tasks. But
in a typical case, the XForms first checks if the task
has been claimed. If not, the user is prompted to claim
it. If the task is claimed, the XForms displays relevant
task information to the user and prompts for user input
if necessary. Finally, the user is given the option of
completing the task, unless the task has the auto-
complete feature turned on.

XForms have greater expressive power than
traditional web forms. We exploit this ability to send a
single XForms document with control flow embedded

Figure 7: The Human Tasks Application

Task
Processing

Portlets

Task
Processing

Portlets

Task
List

Portlet

Human Task Manager

service

Task

Processing
Portlets

JSPJSPJSPs
(XForms)

within the document. This allows the user interaction
to take place via a disconnectable modality like email
even when there is no network connectivity.

In summary, the mobilization of the HTA includes
the following changes to the original application.
First, the HTM service was made to access the Pusher
Web service and push new tasks to users. The original
JSPs, which generated HTML markups, were re-
written to generate XForms instead. The portlets were
also modified to call these new JSPs.

5.1. Example Use Case
We have also implemented a hypothetical travel

request approval business process using the HTA. The
process involves an employee and his manager. We
present the following example use case to illustrate the
functionality of Puma and HTA.

When the employee accesses the HTA from his IM
client, he sees that a travel request task has been
assigned to him (presumably due to the instantiation
of the business process). The employee chooses to
claim and process this task and is prompted to provide
travel details (see Figure 8). When he completes the

task, the business process creates a new task of travel
approval in HTA and assigns it to the manager. The
HTA then pushes this new task to the manager via the
Pusher. The Pusher realizes that the manager is in a
meeting and does not want to be interrupted. So the
Pusher delivers the task by email (see Figure 9). The
manager finds the message in his mailbox after
returning from the meeting. He grants the request by
replying the email message. Finally, a new notification
task is created in HTA to inform the employee of the
approval. Because the employee is still available on
IM, the notification task is pushed as an instant
message. This completes the travel approval process.

The same business process was also implemented
on Puma’s predecessor – PerCollab [2]. A comparison
of the two implementations shows Puma’s additional
capabilities of supporting pull-based interactions and
fully customized user interfaces. More importantly,
Puma supports pervasive access to applications other
than workflow systems.

6. Related Work
The idea of exploiting peer collaboration tools to

interface with computer applications is not a new one.
People have long been enjoying the convenience and
flexibility of telephone-based voice applications. There
is a very large and profitable market for voice
applications, spanning the domains of supply chain,
finance, travel, healthcare, government and education.
WebSphere Voice Server [9] and Microsoft Speech
Server [10] are commercial offerings for enabling
telephone access to applications and data. There is
even a proposed standard, VoiceXML, for
representing a voice interface [11]. Puma has taken
this idea much further and developed a generic and
extensible framework for pervasive access from any
collaboration tools. Compared to voice, textual
modalities such as email, SMS and IM offer additional
benefits. They allow access when interaction via voice
is not feasible (for example, when in a meeting). They
also avoid the intrinsic difficulties and ambiguities in
voice recognition. In addition, Puma allows
interactions to be pushed to users by applications,
which is not typically supported by current voice
systems and applications.

Some applications are capable of a simple form of
push. They can send notifications to users via some
collaboration mechanism. Email is a common choice
of e-commerce Web sites for sending order
confirmations. The last couple of years have seen a
growing use of SMS. While most applications send
notifications via a modality-specific API (e.g.,
JavaMail [12]), the Notification Dispatcher provides a Figure 8: Travel Request via IM

uniform API for delivering messages to a variety of
channels including telephones, WAP devices, SMS
devices, IM, and email [6]. It also allows delivery
preferences to be specified that are predicated on the
user's dynamic context. Nevertheless, existing systems
support the push of one-way messages only. In
comparison, Puma enables the push of two-way
interaction sessions, which introduces a whole set of
design challenges.

A large body of work has addressed the generation
of user interfaces for heterogeneous devices [13, 14,
15]. A widely-adopted approach is model-driven UI
development [28]. The idea is to represent the user
interface using a device-independent representation,
which specifies the kinds and structure of the
information to be exchanged between the user and the
application. The device-independent representation is
then converted to a device-specific representation via
some form of automatic adaptation. Several device-
independent UI representations have evolved over the
years, including UIML [16], XForms [1] and
Microsoft Mobile Controls [17]. Examples of device-
specific UI representations are HTML for PCs and
PDAs, WML for WAP cell phones, and cHTML for
Japanese i-mode phones. Runtime systems that
support some variation of UI targeting include
WebSphere Portal [4], Microsoft .Net [18], and
Volantis Multi-Channel Server [19]. These systems
target client devices that accept certain form of UI
markup. Unfortunately, peer collaboration tools,
which were intended for free-form people-to-people

interaction, do not fit this description. Therefore Puma
has to resort to Modality Bots that manifest as peers in
the collaboration system but control user interactions
according to XForms-based UI representations. With
WebSphere Portal as part of the implementation,
Puma also allows the application UI to be adapted to
client characteristics.

In the domain of unified communication, a number
of projects have developed extensible frameworks that
enable people-to-people communication across
heterogeneous end-points and route calls to a
convenient callee device based on user preferences and
context. These include the Mobile People Architecture
[29], Universal Inbox [30], and our own Mercury
system [24]. As mentioned before, the interaction
between people is ad hoc and unstructured. The key
aspect that sets Puma apart is the additional support
for representing and rendering a structured user
interface for interaction between people and
applications.

7. Conclusions
Pervasive access to computer applications and

services, at any time and from any location, is an old
but enduring vision in computer science. Recently,
there have been renewed interests from universities
and industry labs in researching new technologies for
pervasive access, due to the requirements of on-
demand business practices and the ever growing
market of mobile offerings. We have been
investigating this issue in the context of the

Figure 9: Travel Approval via Email

omnipresent Web applications and developed the
Puma system. Puma bridges Web applications and
pervasive clients, extending application access from
conventional browser-equipped devices to peer-
collaboration mechanisms. Puma supports both user-
initiated and application-initiated interactions. It
represents the user interaction model in platform-
independent XForms and renders it on heterogeneous
clients. Observing that the choice of an appropriate
user interaction modality depends on the user’s
current context, Puma also provides for client
selection policies that are predicated on dynamic user
context information such as location, activity and
connectivity. Puma is the first system we are aware of
that provides a generic framework for pervasive
application access from arbitrary collaboration
modalities. It is also the first known system that
enables the proactive pushing of interaction sessions
from applications to users. Although the presentation
and interaction capabilities of collaboration tools may
appear primitive compared to those of a full-fledged
graphical user interface, anecdotal experiences
indicate that application access using collaboration
mechanisms can go a long way in offering flexibility
and convenience to users. The great market success of
phone-based voice applications also confirms that.

8. References
[1] W3C. XForms – The Next Generation of Web Forms.
http://www.w3.org/Markup/Forms.
[2] D. Chakraborty and H. Lei. Pervasive Enablement of
Business Processes. 2nd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2004),
Orlando, Florida, March 2004.
[3] D. Chakraborty and H. Lei. Extending the Reach of
Business Processes. IEEE Computer, 37(4), April 2004.
[4] IBM. WebSphere Portal for Multiplatforms. http://www-
306.ibm.com/software/genservers/portal/
[5] The IBM XML Forms Package, April 2003. http://www
.alphaworks.ibm.com/tech/xmlforms.
[6] H. Lei, D. Sow, J. Davis II, G. Banaduth and M. Ebling.
The Design and Applications of a Context Service. ACM
Mobile Computing and Communications Review (MC2R),
6(4), October 2002.
[7] Guruduth Banavar et al, An Authoring Technology for
Multidevice Web Applications. IEEE Pervasive Computing,
Jul.-Sept. 2004 issue.
[8] Lotus. Sametime. http://www.lotus.com/products/
lotussametime.nsf/wdocs/homepage.
[9] IBM. WebSphere Voice Server. http://www-306.ibm.
com/software/pervasive/voice_server/
[10] Microsoft. Speech Server. http://www.microsoft.com/
speech/
[11] W3C. VoiceXML. http://www.w3.org/TR/voicexml20/
[12] Sun. JavaMail. http://java.sun.com/products/javamail/

[13] Shankar Ponnekanti, Luis Alberto Robles and Armando
Fox. User Interfaces for Network Services: What, from
Where, and How. 4th IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2002), 20-21 June 2002,
Callicoon, NY, USA.
[14] Krzysztof Gajos and Daniel S. Weld. SUPPLE:
Automatically Generating User Interfaces. International
conference on Intelligent user interface, Funchal, Madeira,
Portugal January 13 - 16, 2004.
[15] Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan
Van den Bergh and Bert Creemers. Dygimes: Dynamically
Generating Interfaces for Mobile Computing Devices and
Embedded Systems. Fifth International Symposium on
Human Computer Interaction with Mobile Devices and
Services (MobileHCI), Udine, Italy, September 2003.
[16] User Interface Markup Language, http://www.uiml.
org/index.php.
[17] Microsoft. ASP.Net Mobile Controls. http://msdn.
microsoft.com/mobility/othertech/asp.netmc/default.aspx.
[18] Microsoft. .Net framework. http://msdn.microsoft.com/
netframework/technologyinfo/default.aspx.
[19] Volantis. Multi-Channel Server. http://www.volantis.
com/story.jsp?story=volmcs&snav=voltech&tnav=volmcs.
[20] Gartner. Startegic Planning Report. http://regionals4.
gartner.com/regionalization/img/gpress/pdf/2004_chapter_
mobile.pdf
[21] Mobile Tech News. http://www.mobiletechnews.com/
info/2004/02/03/122211.html.
[22] Open Mobile Alliance. WAP Wireless Markup
Language Specification. http://www.oasis-open.org/
cover/wap-wml.html.
[23] W3C. Compact HTML for Small Information
Appliances. http://www.w3.org/TR/1998/NOTE-
compactHTML-19980209/.
[24] H. Lei and A. Ranganathan. Context-Aware Unified
Communication. IEEE International Conference on Mobile
Data Management (MDM 2004), Berkeley, CA, January
2004.
[25] Sun. Designing Enterprise Applications with the J2EE
Platform. http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/index.html.
[26] IBM. WebSphere Application Server. http://www-
306.ibm.com/software/webservers/.
[27] IBM. BotServer. Proprietary system.
[28] P. Szekely. Retrospective and challenges for
model-based interface development. In F. Bodart and
J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, Wien, 1996.
[29] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G.
Appenzeller and M. Baker. Personal-level
Routing in Mobile People Architecture. USENIX Symposium
on Internet Technologies and System, October 1999.
 [30] B. Raman, R. Katz and A. Joseph. Universal Inbox:
Providing Extensible Personal Mobility and Service
Mobility in an Integrated Communication Network. 3rd
IEEE Workshop on Mobile Computing Systems and
Applications, Monterey, CA, December 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

