
QONCH: A System for Distributed Network Querying using
Bounded Approximate Caching

Badrish Chandramouli Jun Yang
Dept. of Computer Science

Duke University
{badrish,junyang}@cs.duke.edu

Amin Vahdat
Dept. of Computer Science and Engineering

University of California, San Diego
vahdat@cs.ucsd.edu

ABSTRACT
As networks continue to grow in size and complexity, distributed
network monitoring and resource querying are becoming increas-
ingly difficult and costly. We have designed, built, and evaluated a
scalable infrastructure for answering queries over distributed mea-
surements, while reducing costs (in terms of both network traffic
and query latency) and maximizing precision of results. In this in-
frastructure, each network node owns a set of numerical measure-
ment values and actively maintains bounds on these values cached
at other nodes. We can then answer queries approximately, using
bounds from nearby caches to avoid contacting the owners directly.
We argue that approximate results are acceptable for our target ap-
plications, as long as errors are quantified precisely and reported to
the user, and there is a mechanism for the user to obtain results with
a specified precision. We have designed, implemented, and evalu-
ated two approaches: One, called QONCH-1, uses a recursive par-
titioning of the network space to place caches in a static, controlled
manner, while the other, called QONCH-2, uses a locality-aware
distributed hash table to place caches in a dynamic and decen-
tralized manner. We use large-scale network emulation to demon-
strate that our techniques are very effective in reducing query costs
while generating an acceptable amount of background traffic. They
are also able to exploit various forms of locality that are naturally
present in queries, and adapt to volatility of measurements.

1. INTRODUCTION
Consider a network of nodes, each monitoring a number of nu-

meric measurements. Measurements may be performance-related,
e.g., per-node statistics such as CPU load and the amount of free
memory available, or pairwise statistics such as latency and band-
width between nodes. Measurements may also be application-
specific, e.g., progress of certain tasks or rate of requests for par-
ticular services. We consider the problem of efficiently supporting
set-valued queries of these distributed measurements. This prob-
lem has important applications such as network monitoring and dis-
tributed resource querying. For example, a network administrator
may want to issue periodic monitoring queries from a workstation
to a remote cluster of nodes over the wide-area network; a team

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

of scientists may be interested in monitoring the status of an on-
going simulation running distributedly over the Grid [3]. As an
example of distributed resource querying, suppose that researchers
want to run experiments on PlanetLab [6], a testbed for wide-area
distributed systems research. They can specify load or connectivity
requirements on machines in the form of a query, and the system
should return a set of candidate machines satisfying their require-
ments.

With increasing size and complexity of the network, the task of
querying distributed measurements has become exceedingly diffi-
cult and costly in terms of time and network traffic. The naive
approach to processing a query is by simply contacting the nodes
responsible for the requested measurements. This approach is very
expensive in terms of network cost and could interfere with mea-
surements themselves. Our goal was to develop an infrastructure
system with better support for distributed network queries, by ex-
ploiting a number of optimization opportunities that naturally arise
in our target applications. First, exact answers are not needed for
most of our target applications. Second, measurements that our
applications are interested in do not vary in a completely chaotic
manner. Third, many types of localities exist in our target appli-
cations: temporal locality among queries e.g. periodic querying,
spatial locality among querying nodes, and spatial locality among
nodes that own the measurements requested.

We have built a distributed querying system named QONCH
(QONCH, pronounced conch, stands for Queries Over a Network
of CacHes) that exploits the optimization opportunities discussed
above. The first two opportunities can be exploited by bounded
approximate caching, whose effectiveness is well established (e.g.
in [4]). We have developed efficient and scalable techniques to
place, locate, and manage bounded approximate caches across a
large network, taking advantage of the localities.

We have developed two systems: The first system (QONCH-1)
is described briefly in Section 2. It uses a recursive partitioning of
the network space to place caches in a static, controlled manner.
The second system (QONCH-2) is described in Section 3. It uses a
distributed hash table (e.g., [8]) to place caches in a dynamic and
decentralized manner.

2. SYSTEM OVERVIEW
Data and queries. Our system consists of a collection of nodes
over a network. Each node monitors various numerical quantities
(measurements), such as the amount of free memory on the node, or
the latency between itself and another node. The monitoring node
is called the owner of these measurements. A query can be issued at
any node for any set of measurements over the network. The term
query region refers to the set of nodes that own the set of requested
measurements. By the way it is defined and used, a query region

Figure 1: Recursive partitioning of network space into squares.

often exhibits locality in some space. We will concentrate on the
case where regions exhibit locality in terms of network proximity,
which is common in practice.

For a query that simply requests a set of measurements from a
region, the result consists of the values of these measurements. Our
system allows a query to specify an error bound; a stale measure-
ment value can be returned in the result as long as the system can
guarantee that the “current” measurement value (taking network
delay into account) lies within the specified error bound around the
value returned.

Nodes can issue relational-style set-valued queries over measure-
ments owned by any nodes in the network. Our query interface
allows complex queries to be composed from operators such as
region creation, selection, and join. For example, a query to se-
lect nodes from two regions, with low CPU load and high memory
availability, such that they have a good connection between them
(in terms of high available bandwidth and low node-to-node la-
tency) is written as follows. A call to region() returns the set of
nodes in a specified hypersphere in the network space. A numeri-
cal comparison can also specify a desired precision.

r1 = region(...);
r2 = region(...);
r3 = select(r1, CPU_LOAD($1) < 0.5 bound 0.1

and AVAIL_MEM($1) >= 100 bound 10);
r4 = select(r2, CPU_LOAD($1) < 0.5 bound 0.1

and AVAIL_MEM($1) >= 100 bound 10);
r5 = join(r3, r4, LATENCY($1,$2) < 50 bound 10

and AVAIL_BW($1,$2) > 100 bound 10);
output r5;

Bounded approximate caching. Caching is a natural and effec-
tive way to utilize previously obtained measurement values. We use
bounded approximate caching, where bounds on cached measure-
ment values are actively maintained by the measurement owners
(directly or indirectly).

Let node N be the owner or a cache of a measurement. N may
be responsible for maintaining bounds for multiple other caches of
the same measurement; we call these caches child caches of N , and
we call N their cache provider (with respect to the measurement).
A cache provider maintains a list of guarantees, one for each of its
child caches. Whenever a guaranteed bound is violated, the cache
provider updates the child with the new value and bounds. This
repeats with the child informing its own guaranteed children and
so forth. There are sophisticated techniques for setting bounds dy-
namically and adaptively (e.g., [5]); we do not consider them in our
work. We focus on techniques for selecting bounded approximate
caches across the network to exploit query locality and the trade-
off between query and update traffic, and for locating these caches
quickly and efficiently to answer queries.

Selecting and locating caches. We have developed two approaches
to selecting and locating caches in the network. The first approach

Figure 2: Two-way aggregation with Pastry.

(QONCH-1) uses a hierarchy induced by recursive partitioning of
the network to spread caches throughout the system in a controlled
manner: Each owner preselects a number of nodes as its poten-
tial caches, such that nearby owners have a good probability of
selecting the same node for caching, allowing queries to obtain
cached values of measurements in large regions from fewer nodes.
The selection scheme is shown in Figure 1. We recursively parti-
tion a d-dimensional network space (defined in terms of some dis-
tance metric such as latency) into successively smaller squares (d-
dimensional hyper- rectangles). We allow each owner O to select
a candidate cache in each of its sibling squares: an order-i sibling
square of O is an order-i square that belongs to the same order-
(i + 1) square as O, but does not contain O itself. This scheme en-
sures that the candidate caches provide reasonable coverage of the
entire space. A cache locator function is used to select the cache –
the function ensures that nearby owners tend to choose the same
representative with high probability. We do not provide further
details regarding this approach due to space considerations. This
approach has a number of disadvantages. First, there is a need for
centralized state to compute the cache locator functions. Second,
this approach does not adapt to the workload and does not exploit
potential locality among querying nodes at runtime. Finally, this
approach restricts the amount of caching at any node (irrespective
of node capability) by design. We will not focus on this approach
in our demonstration; if visitors are interested we can demonstrate
the comparison of the two approaches.

These disadvantages are overcome in the second approach, which
uses a locality-aware DHT to achieve locality- and workload-aware
caching in an adaptive manner. With the use of DHT, the system
is much more decentralized than in the controlled approach. The
downside is a lesser degree of control in exploiting locality, and
more complex protocols to avoid centralization. This approach is
presented in detail in Section 3.

3. DESIGN OF QONCH-2
To combat the problems with the controlled caching approach,

we propose a dynamic, DHT-based approach to placing and locat-
ing caches that adapts well to a changing query workload. There are
several high-level reasons for using DHTs: The technology scales
to a large number of nodes, the amount of state maintained by each
node is limited, the system uses no centralized directory, and it
copes well with changing network conditions. We use Pastry [8],
a popular DHT that provides a scalable distributed object location
and routing substrate for P2P applications. Pastry’s properties pro-
vide us a natural way to aggregate messages originated from close-
by nodes.

3.1 Caching with Pastry

Our basic idea is to leverage a locality-aware DHT such as Pas-
try in building a caching infrastructure where two types of aggrega-
tion naturally take place. One type of aggregation happens on the
owner side: Close-by owners select same caching nodes nearby, al-
lowing us to exploit the spatial locality of measurements involved
in region-based queries. The other type of aggregation happens
on the querying node side: Close-by querying nodes can also find
common caches nearby, allowing us to exploit the spatial locality
among querying nodes.

Suppose that all nodes route towards a randomly selected root
using Pastry. The Pastry routes naturally form a tree T (with bidi-
rectional edges) exhibiting both types of aggregation, as illustrated
in Figure 2. Queries first flow up the tree following normal (for-
ward) Pastry routes, and then down to owners following reverse
Pastry routes. Nodes along these routes are natural candidates for
caches. Our system grows and shrinks the set of caches organi-
cally based on demand, according to a cost/benefit analysis using
only locally maintained information. The operational details of our
system are presented next.

3.1.1 Initialization, Querying, and Updating
A primary objective of the initialization phase is to build the

structure T . While Pastry itself already maintains the upward edges
(hops in forward Pastry routes), our system still needs to main-
tain the downward edges (hops in reverse Pastry routes). These are
maintained as a representation of the set of nodes found in each
subtree, which we call a subtree filter. Subtree filters are used to
forward messages on reverse Pastry paths. Subtree filters for large
sets are implemented with Bloom filters [1].

When a query is issued for a set of measurements, the querying
node routes a READ message towards the root via Pastry. When a
node N receives a READ message, it checks to see if it can provide
any subset of the measurements requested and if yes it responds to
the querying node. The unanswered measurement requests are for-
warded towards the owners of those measurements. The requests
are either forwarded along reverse paths (for measurements whose
owners are located below) or up along forward paths (for the re-
maining measurements). Figure 2 shows the flow of READ messages
when node N1 queries measurements owned by O1, O2, and O3,
assuming that no caching takes place. If node N2 happens to cache
measurements owned by O1 and O2, then messages 7 through 9
will be saved.

Updates due to bound violations are processed as described in
Section 2. In essence, the tree shown by dotted arrows in Figure 3
provides a scalable structure for multicasting CACHE UPDATE mes-
sages.

3.1.2 Adding and Removing Caches
Each node in our system has a cache controller thread that pe-

riodically wakes up and makes caching decisions. Suppose that a
node N decides to start caching a particular measurement m. Let
Pm denote the first node that can be N ’s cache provider on the
shortest path from N to the owner of m in T . Let Cm denote
the subset of Pm’s child caches whose shortest paths to Pm go
through N . An example of these nodes is shown in Figure 3. The
SPLICE IN operation causes Pm to be responsible for updating N ,
and N to take over the responsibility of updating Cm, as illustrated
in Figure 3 on the right. Now if N decides to stop caching m, the
reverse of the above operation occurs, and is called a SPLICE OUT

operation. We do not discuss the details of these operations due to
space considerations.

3.1.3 Caching Decisions

Figure 3: Splicing: adding and removing a cache.

For each measurement m that N has information about, the cache
controller thread computes the benefit and cost of caching m. We
have broken down the components of benefit and cost. Bread (m)
denotes the benefit in terms of reduction in read traffic. Bupdate(m)
is the net benefit in terms of reduction in update traffic. Cupdate(m)
is the cost in terms of resources (processing, storage, and band-
width) incurred by N for maintaining its child caches for m. Fi-
nally, Ccache (m) is the cost incurred by N for caching m (other
than Cupdate(m)). We have derived formulas for each of these
components. Let Tupdate specify the maximum amount of resources
that the node is willing to spend on maintaining its child caches,
and Tcache specify the maximum size of the cache. We use a sim-
ple greedy algorithm by defining the pseudo-utility of caching m
as

Bread (m) + Bupdate(m)

Cupdate(m)/Tupdate + Ccache(m)/Tcache

.

It is basically a benefit/weighted-cost ratio of caching m. The
greedy algorithm decides to cache measurements with highest, non-
negative pseudo-utility values above some threshold.

4. SYSTEM ARCHITECTURE
We have implemented both QONCH-1 and QONCH-2. The im-

plementation of QONCH-1 consists of around 3000 lines of C++
code. For QONCH-2, we used the MACEDON [7] implementation
of the Pastry DHT. MACEDON is an infrastructure for designing
and implementing robust networked systems; it allows us to plug
in different DHT implementations without changing the rest of the
code. Our implementation of the DHT-based QONCH-2 on top of
MACEDON consists of around 4500 lines of C++ code. We focus
on QONCH-2 in this section.

Figure 4 shows the overall architecture of our evaluation method-
ology. We emulate a large network using ModelNet [9], a scalable
Internet emulation environment. ModelNet enables researchers to
deploy unmodified software in a configurable Internet-like environ-
ment and subject them to varying network conditions. A set of edge
emulation nodes run the software code to be evaluated; all packets
are routed through a set of core emulation nodes, which cooper-
ate to subject the traffic to the latency, bandwidth, congestion con-
straints, and loss profile of a target network topology. These nodes
are shown in the figure as the lowest layer. Experiments with sev-
eral large-scale distributed services have demonstrated ModelNet’s
effectiveness.

For all our experiments, we use 20,000-node INET [2] topolo-
gies with a subset of 250 nodes participating in measurement and
querying activities. These nodes are emulated by twenty 2.0GHz
Intel Pentium 4 edge emulation nodes running Linux 2.4.27. All

Figure 4: Evaluation architecture.

traffic passes through a 1.4GHz Pentium III core emulation node
running modified FreeBSD-4.9. We deploy ModelNet on these
nodes, and run MACEDON on the emulated overlay nodes. The
Pastry DHT is deployed using MACEDON. Finally, QONCH-2
runs on top of the API exposed by the Pastry implementation of
MACEDON. QONCH exposes an interface for issuing queries; this
interface can be accessed via a local socket connection. Querying
clients run on the virtual nodes in the overlay, and accept queries
in the query language described earlier (either from the command
line or via a batch interface). The requests for measurements of
specified bound width are sent to QONCH via the socket interface.

Figure 5 shows the detailed architecture of QONCH-2. The Re-
quest Processor receives the measurement request, which consists
of the set of owners and measurements desired, and the requested
bound width. It sends a READ request to the Read Handler, which
checks if the requested item is either owned locally or present in
the cache at the requested bound width. If yes, the READ REPLY is
sent immediately. The unanswered part is forwarded as described
in Section 3. The Read Handler at each step performs the same
tasks until the request reaches either a cache or an owner. Each
owner has a Measurement Monitor that monitors and updates mea-
surements into the database of owned items. Whenever a guaran-
teed bound is violated, a CACHE UPDATE is sent to the child cache,
which in turn sends the same to its violated guarantees. The Statis-
tics Updater updates the statistics periodically, e.g. it calculates
the local hit rate as a moving average by using a hit counter that is
periodically reset. The Cache Decider wakes up periodically and
uses the collected statistics to make caching decisions. Based on
the decisions, it send out SPLICE IN and SPLICE OUT messages.
The Message Processor intercepts a number of messages, updates
statistics as necessary, updates the cache if necessary, and forwards
the messages or generates new messages (such as a SPLICE IN OK

in response to a SPLICE IN request that can be satisfied). It uses
the subtree filters to perform reverse forwarding if the message is
on the reverse route, otherwise normal Pastry routing is used in the
forward direction.

5. DEMONSTRATION
The demonstration will show how QONCH-2 outperforms both

the naive approach of contacting the owners directly, and QONCH-
1. We will also show, by subjecting the system to a combination of
different types of workloads, that the cache selection scheme used
by QONCH-2 is more dynamic and workload-aware than QONCH-
1. Although QONCH-1 is simple and does much better than the
naive approach, its controlled approach does not exploit potential
locality among querying nodes at runtime. For example, it is pos-
sible for a number of close-by nodes to request the same faraway

Figure 5: System architecture.

owner over and over, and still not find a cache nearby, because by
design there are fewer candidate caches farther from the owner, and
the static cache selection scheme will not adapt to the query work-
load. In contrast, QONCH-2 will select a cache nearby as soon as
the combined request rate from all querying nodes makes caching
cost-effective. We will demonstrate the ability of the DHT-based
QONCH-2 to take advantage of query region locality. We will also
demonstrate the ability of QONCH-2 to adapt to volatility in mea-
surements. For example, when the update rate is very high the
system will revert to a no-caching mode because it is no longer
beneficial to cache. QONCH-2 makes distributed network query-
ing and network monitoring more scalable and less costly (in terms
of both network traffic and query latency), and our demonstration
will highlight the advantages of bounded approximate caching on
a large scale network using our developed techniques.

6. REFERENCES
[1] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, pages
13(7):422–426, 1970.

[2] H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Towards Capturing Representative AS-Level
Internet Topologies. In Proceedings of ACM SIGMETRICS,
June 2002.

[3] I. Foster and C. Kesselman. The grid: blueprint for a new
computing infrastructure. Morgan Kaufmann Publishers Inc.,
1999.

[4] C. Olston. Approximate Replication. PhD thesis, Stanford
University, 2003.

[5] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. In SIGMOD, 2001.

[6] PlanetLab. http://www.planet-lab.org.
[7] A. Rodriguez, C. Killian, D. Kostić, S. Bhat, and A. Vahdat.

MACEDON: Methodology for Automatically Creating,
Evaluating, and Designing Overlay Networks. In
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI), March 2004.

[8] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218, 2001.

[9] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. ACM SIGOPS Operating
Systems Review, 2002.

