
117

DARQ Matter Binds Everything: Performant and Composable
Cloud Programming via Resilient Steps

TIANYU LI∗,MIT CSAIL, USA

BADRISH CHANDRAMOULI,Microsoft Research, USA

SEBASTIAN BURCKHARDT,Microsoft Research, USA

SAMUEL MADDEN,MIT CSAIL, USA

Providing strong fault-tolerant guarantees for the modern cloud is difficult, as application developers must

coordinate between independent stateful services and ephemeral compute and handle various failure-induced

anomalies. We propose Composable Resilient Steps (CReSt), a new abstraction for resilient cloud applications.

CReSt uses fault-tolerant steps as its core building block, which allows participants receive, process, and send

messages as a single uninterruptible atomic unit. Composability and reliability are orthogonally achieved by

reusable CReSt implementations, for example, leveraging reliable message queues. Thus, CReSt application
builders focus solely on translating application logic into steps, and infrastructure builders focus on efficient

CReSt implementations. We propose one such implementation, called DARQ (for Deduplicated Asynchronously
Recoverable Queues). At its core, DARQ is a storage service that encapsulates CReSt participant state and
enforces CReSt semantics; developers attach ephemeral compute nodes to DARQ instances to implement

stateful distributed components. Services built with DARQ are resilient by construction, and CReSt-compatible

services naturally compose without loss of resilience. For performance, we propose a novel speculative

execution scheme to execute CReSt steps without waiting for message persistence in DARQ, effectively eliding

cloud persistence overheads; our scheme maintains CReSt’s fault-tolerance guarantees and automatically

restores consistent system state upon failure. We showcase the generality of CReSt and DARQ using two

applications: cloud streaming and workflow processing. Experiments show that DARQ is able to achieve

extremely low latency and high throughput across these use cases, often beating state-of-the-art customized

solutions.

CCS Concepts: • Computer systems organization→ Cloud computing; • Information systems→ Cloud
based storage.

ACM Reference Format:
Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden. 2023. DARQ Matter Binds

Everything: Performant and Composable Cloud Programming via Resilient Steps. Proc. ACM Manag. Data 1, 2,
Article 117 (June 2023), 27 pages. https://doi.org/10.1145/3589262

1 INTRODUCTION
Modern cloud developers build applications by composing various distributed components such as

vendor services (e.g., Amazon S3 [13], Azure CosmosDB [14]), custom-built microservices (e.g., with

∗
Work started during internship at Microsoft Research.

Authors’ addresses: Tianyu Li, litianyu@csail.mit.edu, MIT CSAIL, Cambridge, Massachusetts, USA, 02139; Badrish

Chandramouli, badrishc@microsoft.com, Microsoft Research, Redmond, Washington, USA, 98052; Sebastian Burckhardt,

sburckha@microsoft.com, Microsoft Research, Redmond, Washington, USA, 98052; Samuel Madden, madden@csail.mit.edu,

MIT CSAIL, Cambridge, Massachusetts, USA, 02139.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART117

https://doi.org/10.1145/3589262

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-2531-8253
HTTPS://ORCID.ORG/0000-0002-8468-4037
HTTPS://ORCID.ORG/0009-0003-8873-7268
HTTPS://ORCID.ORG/0000-0002-7470-3265
https://doi.org/10.1145/3589262
https://orcid.org/0000-0003-2531-8253
https://orcid.org/0000-0002-8468-4037
https://orcid.org/0000-0002-8468-4037
https://orcid.org/0009-0003-8873-7268
https://orcid.org/0000-0002-7470-3265
https://doi.org/10.1145/3589262

117:2 Tianyu Li et al.

Kubernetes [20] or Azure Service Fabric [17]), and stateless compute (e.g., serverless FaaS [12, 16]).

The key challenge when building stateful applications in this highly distributed environment is

fault-tolerance. Despite the wealth of work in highly-available and reliable individual components,

developers must still painstakingly ensure they work together correctly upon failure [47].

Consider a simple example where service A must pass the result of a user request to another

service B, which processes the result and updates its state (e.g. for aggregation in analytics). Service

A may fail after sending the result to B, but before it persistently records that it has done so, leading

to duplicate results sent on recovery. Similarly, B may fail and lose the results after A delivers the

result, leading to lost data. To mask this complexity, developers want end-to-end resilience, defined
as behavioral indinstinguishability of the application from failure-free scenarios, except perhaps

with performance degradation due to failure handling.

Resilience is essential for applications with strong correctness requirements (e.g., involving

monetary transactions or irreversible physical effects); in other cases, it is a powerful abstraction

that hides distributed system complexity from the average user, simplifying user applications and

increasing user productivity. Such resilient systems are prolific in the modern cloud: for example,

batch processing systems such as Spark [70] transparently retry failed nodes to mask failures;

Netherite [30] and Ambrosia [39] leverage DBMS-style logging across heterogeneous machines,

Kafka Streams [68] implements consistent stream processing using persistent logs and cross-node

transactional writes, and Azure Durable Functions [15, 30] guarantee effectively-once execution of

composed serverless functions through a carefully implemented stateful messaging layer. These

solutions share many characteristics, such as dependency tracking, asynchronous checkpoints,

carefully defined and enforced atomicity scopes, message retries/deduplication, etc. But perhaps

the greatest commonality is that these solutions are highly complex, specialized, and difficult to

implement. To build a new resilient system, infrastructure developers must still design their own

mechanisms and handcraft their implementations, which is often time-consuming and error-prone.

Ideally, developers can build heterogeneous distributed components on a general abstraction and

compose them into resilient systems with reusable building blocks.

In this work, we present Composable Resilient Steps (CReSt), a new abstraction that separates com-

posable application logic from resilient distributed system implementation. In CReSt, components

operate in steps: a component consumes some (≥ 0) messages, updates its local state, and optionally

sends a series of messages as a result. Because almost any distributed system can be specified

with message-passing primitives [37], it is easy to translate existing systems into a sequence of

steps. CReSt effectively decouples application logic (specified as CReSt steps) from mechanisms

for resilience and composition (implementation of CReSt steps). For developers, CReSt steps are
all-or-nothing and uninterruptible by failures, similar to database transactions, making them a

powerful abstraction – as shown later, applications written with steps are resilient by construction

and seamlessly compose with other CReSt applications while preserving resilience. For infrastruc-

ture builders, CReSt is a narrow interface that allows for efficient, reusable implementations that

benefit many applications.

To demonstrate the effectiveness of CReSt, we build DARQ, a highly optimized CReSt imple-

mentation for the modern disaggregated cloud. DARQ is a storage service that encapsulates the

state of CReSt components and emulates a failure-free messasging layer between them; developers

attach ephemeral compute to DARQ to receive messages and perform CReSt steps. When using

DARQ, developers focus on application logic as steps, and DARQ transparently ensures atomicity

and durability of steps via (group) commit, and resilient composition via message retry and dedu-

plication. Individual services built with DARQ are therefore resilient, and resiliently compose with

other CReSt-compatible services through a narrow message-passing interface. Under the hood,

DARQ consists of a layer of CReSt logic on top of a performant log, making it lightweight to deploy

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:3

and scale. Correctness of DARQ is grounded in our formal modeling of CReSt components as I/O

automata [53] in a fail-restart environment where faulty components are quickly replaced with

previous snapshots of their state from reliable cloud storage. For performance, We introduce a

novel scheme of speculative step execution, where DARQ messages are processed before persistence.

Similar in spirit to early lock release [64], speculative execution allows for subsequent steps to occur

without waiting for persistence of previous ones, effectively parallelizing slow cloud persistence,

leading to dramatically reduced end-to-end latency. DARQ internally tracks step dependencies and

automatically restores the system to a consistent state upon failure, transparent to CReSt users.
Note that DARQ is merely one implementation of CReSt, and other implementation are possible.

For example, one can use distributed transactions [29, 45, 57] across senders, step processors, and

receivers to orchestrate atomic steps, or adopt widely-used cloud programming patterns such as

transactional outboxes [6] and Sagas [5]. In contrast, DARQ is specifically engineered to work

with storage-compute separation in the modern cloud and compose decoupled services, free of any

requirement of cross-service atomicity such as traditional distributed transactions with two-phase

commit. In exchange, DARQ incurs additional persistence round-trips (mitigated by speculative

execution) in favor of distributed coordination across service boundaries. To show that CReSt can
express diverse cloud applications, and that DARQ offers competitive performance to alternatives,

we build an example streaming application and workflow application using DARQ. Our evaluation

of these systems shows that DARQ can help build resilient cloud applications, often outperforming

handcrafted solutions in terms of throughput and latency, while being simpler and more reusable.

To summarize, we make the following contributions:

• (Sec. 2) We propose CReSt, a general abstraction for resilient cloud applications based on

composable fault-tolerant steps.

• (Sec.3) We design and build DARQ, an efficient CReSt implementation as a service for the

modern cloud, based on group commit and reliable message delivery.

• (Sec.4) We propose a novel speculative step execution scheme with DARQ to bypass slow

cloud storage and reduce end-to-end latency in composed cloud applications.

• (Sec.6) We prototype and evaluate a stream-processing system and a cloud workflow system

using DARQ, showcasing that DARQ-based applications are performant, general, and easy to

build compared to the current state-of-the-art.

Finally, we cover related work in Sec. 7 and conclude in Sec. 8.

2 COMPOSABLE RESILIENT STEPS
We now introduce the Composable Resilient Steps (CReSt) model in detail. With CReSt, devel-
opers design applications based on a simple mental model of stateful participants and message

channels, as shown in Figure 1. Participants perform atomic, all-or-nothing steps that receive
some (≥ 0) messages, process messages and update their local state, and finally send some (≥
0) messages. In more concrete terms, each CReSt participant is a state machine with some lo-

cal state (accessible as participant.State). CReSt programs invoke participant.Receive()
to acquire messages intended for the participant, and evolve the system exclusively through

participant.Step(consumed, newState, outgoing), where consumed is the list of messages

consumed, newState is the updated component state, and outgoing is the resulting list of mes-

sages to send to other participants. Once a step completes, its effects become fault-tolerant – the

messages it consumes will not be delivered or consumed again, any local participant state becomes

recoverable, and any outgoing messages will be delivered asynchronously and exactly-once to

other CReSt participants. This implicit resilience dramatically simplifies the application logic, as it

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:4 Tianyu Li et al.

hides complex low-level mechanisms (e.g., checkpointing, recovery, retries, and deduplication) for

developers to focus on the high-level application logic.

Steps often have application-level meanings, corresponding to processing of a request, completion

of task, etc. For example, a simple RPC service that handles client requests to atomically compare-

and-swap (CAS) a named value can be thought of as performing steps that consume the client

request message, atomically execute the operation, and reply with the result. In this case, each

CAS participant has local state that is a dictionary of named values; the service logic consists

of a (sequential) processing loop that calls participant.Receive(), deserializes client requests,
performs the compare-and-swap operation, and invokes participant.Step() to persist the effects
and expose responses. If clients and the CAS server both participate in CReSt, the resulting end-to-

end application is also resilient, because failures cannot interrupt steps, only delay execution until

retry.

2.1 Example Applications with CReSt
Before formally introducing the CReSt model, we highlight the generality of CReSt using several

real-world applications that can be easily specified using CReSt steps.
Cloud Workflows: Cloud workflows are programs that chain together multiple services in a

distributed environment. Systems such as Temporal [21], Azure Durable Functions [15], or Amazon

Step Functions [1] implement workflows in various ways as an important cloud programming

abstraction. In CReSt, one can think of workflows as a coordinator state machine (which may be

virtual) sending a series of messages to component services, and keeping workflow state locally (i.e.,

the coordinator performs Step(prevResponses, programState, nextRequest), and services

perform Step(request, state, response)). Workflows specified with CReSt are resilient when
executed on an environment that correctly implements CReSt achieving the same guarantee as

systems such as Azure Durable Functions. Such modeling is also similar in spirit to the serverless
message-passing model used by Netherite [30] and other similar work [65, 72], to implement resilient

workflows.

Stream Processing: Streaming systems consist of various stream processors performing com-

putation on an underlying stream of data organized into partitions and topics. In CReSt, a stream
processor can be modeled as continuously performing steps to consume batches of messages from

upstream, processing them locally, and sending results downstream. For example, a stateless filter

processor may receive message𝑚 and emit Step([𝑚], null, [𝑚]) if the predicate evaluates

to true on𝑚, or emit Step([𝑚], null, []) if false, marking𝑚 as consumed without sending it

downstream. A stateful operator may not immediately output a message, but may continuously

take steps to update its local state (e.g., a count operator receiving message𝑚 may emit Step([𝑚],
count + 1, []), and only emit Step([], count, [𝑎𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (𝑐𝑜𝑢𝑛𝑡)]) periodically). Several

steps may also be coalesced into a single step for batched I/O. Stream processing specified with

CReSt steps is resilient by default, providing “exactly-once” semantics [62, 68], in the sense that

each data item in the input data stream is reflected exactly-once in the result. Application developers

do not need to implement retransmissions, checkpointing, or other fault tolerance mechanisms,

which are handled by CReSt implementations.

Distributed Commit Protocol: Traditional distributed databases implement ACID transac-

tions using the 2-phase commit protocol, which is tightly integrated with the write-ahead log for

fault-tolerance [57]. This protocol can be re-specified in CReSt as a sequence of steps – using a

successful 2-phase commit sequence as an example, the transaction coordinator first uses a step to

note down the start of commit of 𝑡 and sends prepare messages to workers (i.e., Step(request,
coordinatorState, PREPAREs)), and workers take steps to check if the commit is allowed and

respond with the result (i.e., Step(PREPARE, workerState, OK)). When all workers respond,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:5

Participant2
Participant1
 Participant3

Fig. 1. An example of a CReSt system with 3 participants. Each participant is a state machine

performing steps that atomically update the state and send/receive messages to/from channels.

the coordinator steps all OK messages, locally marks the transaction as committed, and sends

commit requests (i.e., Step(OKs, coordinatorState, COMMITs)), followed by workers resiliently
applying the commit (i.e., Step(COMMIT, participantState, ACK)). Note here that the protocol
designer does not need to reason about component failures or message loss, as CReSt transparently
guarantees resilience.

2.2 Fail-Restart Model
Given a CReSt application, with each component and the steps it performs, our goal is to deploy it

to the failure-prone cloud while preserving application semantics. Intuitively, our goal is behavioral
indistuinguishability – users should not be able to differentiate between executions of the CReSt
application in a failure-free environment and one that automatically recovers from failures. This is

difficult; consider again the CAS service – the service may fail without sending the reply, or the

CAS service may send the result, but crash and lose the updated state. To make matters worse,

resilient steps in our example involve more than just the CAS service; a service that is resilient by

itself may still fail to guarantee resilient steps, as clients may crash and lose replies.

We address this in two steps. First, we introduce the fail-restart model (Section 2.2). Unlike

the fault-oblivious CReSt model, it closely models cloud deployment environment by subjecting

all components to possible failure, but allowing them to (quickly) restart and recover their state

from durable storage. Next, we present a transformation (Section 2.3) that automatically converts a

CReSt application to be fail-restart, and show that this transformation is faithful to the original

semantics.

2.2.1 Modeling Cloud Failures. As is standard in distributed systems modeling, we model par-

ticipants and channels using I/O automata [53]. Each participant is an automaton that performs

atomic stateful actions to its local state, and interacts with other automata using asynchronous

messages. A step is formally a segment of original automaton execution that starts with some (≥ 0)

Receive actions, followed by arbitrary local updates, and then some (≥ 0) Send actions. Obviously,

we can decompose any execution trace into a series of steps. As mentioned, we define failures

in CReSt as fail-restart. More formally, a fail-restart automaton has two copies of its state — one

volatile (e.g., in-memory) and one persistent (e.g., checkpointed on S3). A fail-restart automaton

normally operates based on its volatile state, but can perform a Commit action to copy its volatile

state to persistent storage or vice-versa with a Restore action. Fail-restart automata also react

to special Restart inputs by erasing their local in-memory state; this corresponds to automated

management tools such as Kubernetes detecting and repairing a failed node. Note that message

channels are unaffected by restarts and will continue to deliver any in-flight, unreceived messages

in order. In practice, the “restarted” machine is likely an entirely different one launched to replace

an unresponsive machine and may even co-exist with the original machine temporarily [8]. We

assume that infrastructure providers can effectively mask this with mechanisms such as leases [40]

or distributed consensus [48, 59].) This external signal can arrive arbitrarily and unconditionally,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:6 Tianyu Li et al.

corresponding to the arbitrary nature of failures. Our goal, then, is to translate the naively specified

CReSt application (corresponding to normal I/O automata with no failures) to fail-restart automata.

2.2.2 A non-solution. At first glance, we may achieve resilience by executing steps inside the

fail-restart automata and inserting Commit after each step. However, this naive transformation

does not achieve resiliency. Performance implications aside, the key challenge here is atomicity.
Consider for example an execution where a participant receives a Restart right after a Receive,

before it has done Commit. Then the recovered state corresponds to a point before the Receive,

but the message may have already been removed from the queue and appear lost. Clearly, it is not

enough to just checkpoint and restore components individually: to recover to a consistent state, we

need a more carefully designed protocol, which we will now present.

2.3 Implementing CReSt: A First Cut
We now sketch a basic fault-tolerant CReSt implementation by presenting a transformation from

a failure-oblivious CReSt application to fail-restart automata. We intend for this implementation

sketch to provide intuition for correctness. This scheme also serves as a starting point for DARQ,

our optimized CReSt implementation, which we discuss in detail in Section 3.

As sketched in Figure 2, the transformation wraps the CReSt application and adds two persistent

message queues – an in-queue and an out-queue of messages
1
. At a high level, our goal is to

use these two queues and automatic invocations of Commit to simulate a failure-free execution

environment for the fault-oblivious CReSt application in a fail-restart setting. To achieve this,

the transformed automaton continuously pulls messages from the network into the in-queue;

messages from different channels are not ordered with each other and may appear in arbitrary

order on the in-queue. These messages are then supplied to the CReSt application as results to

participant.Receive(). When the CReSt application invokes Step, consumed messages are

removed from the in-queue, and the outgoing messages are added to the out-queue. Note that

message consumption need not be in strict FIFO order – suppose participant.Receive() yields

messages𝑚1 and𝑚2, the participant may consume them in arbitrary order, or simultaneously as an

atomic unit, by explicitly supplying either𝑚1,𝑚2, or {𝑚1,𝑚2} as the consumed argument to Step.
The transformed automaton periodically performs a Commit that persists both the queues and the

state of the original automaton without interleaving Commit with any Step, which ensures that

no partial step is committed.

On Restart, however, even if the recovered transformed automaton state contains no partial

steps, there may be partial leftover effects on the network. Specifically, a Restart may occur after

message receipt but before messages are persistent on input message queues, or after sending

but before the output message queue can mark it as sent. We borrow from the classical TCP

algorithm [60] by retrying and deduplicating messages. The transformed automaton continuously

retries out-queue messages until acknowledged, which happens after the destination automaton

persists the received message. Acknowledge messages are then pruned from the system. To avoid

processing the same message more than once due to retries, in-queues deduplicate incoming

messages using sequence numbers. Each outgoing message includes a unique identifier that consists

of a participant id and a sequence number assigned as they enter the out-queue. Each in-queue

maintains a deduplication table that maps each participant id to the largest seen sequence number

from that participant, neglecting messages with lower sequence numbers. This deduplication state

is persisted during Commit along with the rest of the automaton state; we similarly enforce that

1
“Queues” are really misnomers, as they are interleavings of multiple underlying message channels, and therefore only

partially ordered. Additionally, as we explain later, messages on the queue can be buffered and then consumed out-of-order.

We have decided to refer to them as queues in accordance with tradition [29].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:7

In-Queue Out-Queue

Retry until
acked

Deduplicate
Incoming

Ack after
Persistence

Original Automaton

(Participant)

Persistent Storage

Recv Send

CommitRestore

Transformed Automaton

Fig. 2. CReSt Transformation & First-Cut Implementation – The original automaton performs

pure CReSt steps. Our translated automaton uses locally stored messaging queues, checkpoints,

and retry-based deduplication to achieve fault-tolerance guarantees.

Commit does not occur between receiving a message and updating the deduplication state, so they

appear atomic upon recovery.

Combined, the two message queues effectively emulate a reliable, fault-tolerant, exactly-once

messaging layer for the CReSt application in a fail-restart environment. This ensures that the

transformed automaton faithfully executes steps from the originalCReSt participant despite failures.
Note that our construction also guarantees resilience for non-deterministic participants, because the

message queues “determinize” a step by capturing its effects persistently before exposing them [37].

If a non-deterministic step experiences failure, either its effects are recovered and the step is not

re-executed, or none of its effects are recovered or exposed and re-execution is not distinguishable

from first invocation.

3 DARQ
The previous section described how a CReSt application can be faithfully translated into fail-restart

automata with persistent message queues, retries, and deduplication. Implementing this efficiently

in the cloud, however, presents major challenges. Most significantly, infrastructure builders must

contend with:

• Stateless Compute: Modern cloud architectures emphasize flexibility and on-demand scale-out.

Most often this involves separating compute and storage and using autoscaling stateless compute

services such as serverless FaaS [44]. The fail-restart model must be adjusted to this setting.

• Incremental State: Our earlier construction saves the entire state of a participant and all queued

messages in each Commit. This performs very poorly when queues are deep or participant state

is large.

• Blackbox Services: Almost all modern cloud systems rely on cloud provider services such as

Amazon S3 or Azure CosmosDB. Such services typically expose an RPC-based API, and cannot

be easily modified by users. For CReSt systems to be correct, developers must extend CReSt
semantics to existing services.

• Latency: As specified, CReSt requires frequent and synchronous persistence of participant state

for fault-tolerance, leading to high latency in processing. To make matters worse, in complex

applications where processing requires many message-passing rounds, the latency overhead is

accumulative and can quickly become unacceptably high.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:8 Tianyu Li et al.

To overcome these challenges, we introduce DARQ (Deduplicated, Asynchronously Recoverable

Queue), an efficient implementation of CReSt that addresses each of the challenges above.

3.1 Processors and Self-Messages
We first give a high-level overview of the DARQ APIs and guarantees, with a running example of

the CAS microservice from before. As shown in Figure 3, at the core of DARQ is a storage service

that encapsulates the state of one CReSt participant plus the persistent message queues introduced

before. External clients or other participants communicate with the encapsulated participant by

sending messages through the DARQ producer API. For example, an external client may submit a

request to invoke CAS(x, 42, 0) by adding it as a message to the relevant DARQ, as shown on the

left in Figure 3. To evolve participant state, developers attach ephemeral compute nodes, called

processors, to DARQs. Each processor is loaded with the “business logic” of the CReSt participant
that performs fault-oblivious steps, and DARQ pushes any messages received to it for application

handling. Processors store participant state locally in volatile memory for direct access, but must

persist such state and expose effects of processing through the DARQ step API. As CReSt specifies, a
DARQ step request includes identifiers for the messages consumed, updated state, and any outgoing

messages (e.g., the example CAS service step in Figure 3 consumes the request, update value of x to

42, and send result to client with success).

DARQ encodes participant state through self-messages – processors send their future (amnesic)

selves enough information to restore state. In the simplest case, as a part of each step, the attached

processor copies the entire updated state as a message (or a succinct reference to externally persisted

state). The message is then consumed in the next step, which generates a new self-message with

updated state. For large or incremental state, self-messages can be used much like a write-ahead log

– each step generates a delta record of the state and does not consume the previous self-messages.

Then, at recovery time, all the unconsumed self-messages will be replayed to the processor in step

order. For example, the step shown in Figure 3 can be encoded as a delta record setting 𝑥 to 42;

upon recovery, these deltas are applied to reconstruct the full state. For efficiency of replay, users

may periodically perform steps to consume previous self-messages and emit a new self-message

that coalesces previous deltas, similar to checkpointing in traditional DBMSs [56] (more on this in

Section 3.2).

To summarize, DARQ is a concrete implementation of the CReSt construction presented earlier,

structured as a cloud service working with ephemeral compute nodes called processors. Users

write applications in a fault-oblivious manner and DARQ transparently ensures fault-tolerance

by automatically enforcing CReSt semantics, persisting state, and recovering from failures. We

have designed DARQ to expose an API similar to streaming/messaging services such as Kafka [7]

or EventHubs [25], but with support for encoding state through self-messages. Note here that

despite the superficial similarities, DARQ fundamentally subscribes to the CReStmodel rather than

streaming or simple message-passing.

3.2 DARQ Implementation
We now cover our implementation of DARQ in detail:

Storage Backend. Recall that each DARQ instance logically stores three pieces of state (in/out

message queues and participant local state) that must be updated atomically, as shown in Figure 4.

As shown in Figure 4, DARQ multiplexes them all onto an underlying physical log of messages

(recall that state is encoded as self-messages), distinguished from each other with a message type

field (shown as different colors in Figure 4). Each message is uniquely identified using a log sequence

number (LSN). Steps are atomic in DARQ as they are simply log appends: consumption of previous

messages is represented with a special completion message with consumed LSNs, and appended

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:9

DARQ

Client

Producer

API

Step

API

Ephemeral
Compute

Deliver r

Push m to compute

1

Enqueue(m) where m
is "CAS(x, 42, 0)"

4 Step(m, s, r), which
consumes m, updates

state with s, and
sends r

2

5

3 Execute CAS(x, 42, 0)

in-memory, yields a

success response, r,

and self message s,
where s is "x = 42"

DARQ internally
persists and route

messages

Fig. 3. DARQ Overview – Developers attach ephemeral compute to each DARQ instance and

DARQ delivers messages by pushing to the compute; the compute node then interact with the rest

of the system via steps in DARQ. State is maintained as volatile data structures in the compute

node, and persisted as self-messages.

along with out-messages, similar to database commit records. Figure 4 shows one such step. Here,

the DARQ service exists in a separate failure domain as the compute node. DARQ streams in-

messages to the attached processor in LSN order, and the processor performs a step locally based

on the in-message at 102 and the latest state at 101. After local processing, the compute node

has evolved its participant state and computed a series of out-messages. These messages are then

appended back to DARQ atomically with a completion record marking 101 and 102 as consumed.

For our implementation, we use FasterLog [19], a popular open-source high-performance log. The

DARQ log is flushed to reliable cloud storage for fault-tolerance by default, but may also rely on

standard replication techniques instead [48, 59].

Failure Recovery.When a processor restarts, it loses all local volatile state and must reconstruct

its state using self messages in DARQ. DARQ enters replay mode when a processor disconnects and

scans the log sequentially in 2 passes: first, to identify completion records and remove consumed

message from replay, and second, to replay unconsumed message to the recovered processor.

Additionally, DARQ reorders self-messages ahead of any in-messages during replay, because self-

messages during normal stepping are always appended to the end of the log, potentially behind

unconsumed in-messages. Note that because DARQ normally does not need to stream self-messages

to processors (as they are merely for recovery purposes), processors can tell that they are in replay

upon entering a self-message, and that replay is finished upon encountering the first in-message.

In real deployments, DARQ must additionally guard against imperfect failure detection, which

may lead to two processors both attaching themselves to DARQ, not necessarily aware of each

other’s existence. For this, we introduce incarnation numbers for processors. Each processor, when

first attached to DARQ, is assigned a unique, monotonically increasing number stored as part of

the DARQ instance state. DARQ will only accept requests tagged with the currently recognized

incarnation number, notifying processors with smaller incarnation numbers so they can gracefully

terminate. Obviously, the value of the largest recognized incarnation number must be persistent

for correctness, and DARQ uses FasterLog’s internal epoch framework [51] to persist the value as

metadata along with each log flush and ensure that the persisted number is consistent with the log

content.

Enforcing Invariants. The DARQ service enforces invariants around steps to guard against

programming errors or other anomalies and preserve CReSt stepping semantics. Every message is

allowed to be consumed at-most-once; steps that attempt to consume any message already stepped

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:10 Tianyu Li et al.

Persistent
In-Queue

Persistent
Out-Queue

Participant
Local State

Multiplex

DARQ
101 102 103 104 105

......

106 107

Processor

State encoded as
self-messages Complete 101, 102

Fig. 4. DARQ Implementation – Underneath the hood, DARQ multiplexes data structures speci-

fied in the CReSt model onto a single log for storage efficiency and atomicity.

are rejected in its entirety, similar to an aborted transaction. DARQ enforces that any steppable (i.e.,

in or self) message is stepped at most once. To achieve this, DARQ maintains an in-memory hash

table of steppable messages; when messages are added either through the producer API or as part

of a step, their LSNs are added to the table. We adopt an OCC-like [46] protocol to serially validate

steps by checking that all the consumed LSNs are in the steppable message table, and remove them.

Steps that fail this validation process are rejected entirely. We reconstruct the steppable message

table upon DARQ failure by scanning the log. Additionally, as presented in Section 2.3, DARQ

needs to deduplicate incoming messages. The producer API takes extra deduplication information

consisting of a globally unique producer ID and a sequence number (i.e., the aforementioned

TCP-inspired deduplication scheme). When sending from a DARQ, DARQ automatically populates

deduplication information. Otherwise, developers may supply application-specific values or omit

them to bypass deduplication. DARQ maintains a deduplication table mapping from producer ID to

the largest seen sequence number that is similarly persisted and kept in-sync with log with [51].

Background Maintenance. In the background, DARQ delivers output messages to their in-

tended recipients, automatically retrying until the recipient acknowledges, as Section 2.3 prescribes.

In addition, DARQ also needs to perform tasks such as garbage collection or checkpoints to prevent

unbounded growth of self-messages. We perform these tasks by running a special process that

scans the log, co-located with DARQ servers. Together with the table of unstepped messages, we

can compute a prefix of the log that has been completed – a message is completed if it has been

consumed by a step as an in/self-message, or if it has been acknowledged by the recipient as an

out-message. DARQ periodically truncates the largest completed prefix for garbage collection.

Checkpoints. Lastly, long-running participants may see self-messages growing unboundedly in

DARQ, preventing garbage collection and slowing down recovery. DARQ supports DBMS-style

checkpointing [56] to truncate self-messages and prevent unrestricted growth. As stated before,

logically, a checkpoint is a special internal step that marks all previous self-messages complete, and

produces a single self-message that encapsulates the current state of the participant. Concretely

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:11

in implementation, the completion record for a checkpoint has a special record type to implicitly

complete self-messages to some log offset, and users supply a custom function to snapshot the

current participant state.

3.3 Integrating with Blackbox Services
As noted previously, components using DARQ to compose with each other enjoy fault-tolerance and

appear to process messages exactly-once. However, it is inevitable that DARQ systems need to com-

municate with external, non-DARQ cloud services. Unfortunately, this usually means that DARQ

regresses to at-least-once guarantees because DARQ fundamentally relies on retries to achieve

exactly-once processing, and external services are generally oblivious to DARQ’s deduplication

schemes.

To address this, DARQ (and by extension, general CReSt) systems must compose with existing

cloud services through CReSt-compatible wrappers. The general idea is for external services to

behave like CReSt components by implementing deduplication and atomic steps without DARQ.

To illustrate, we sketch a way for services to achieve this using the example of an ACID DBMS.

Consider the well-known transactional outbox pattern [6], where the database must atomically

update application state and send events/messages. The standard solution calls for a separate

“outbox” co-located within the database; any request atomically writes the result to the outbox

with any storage effects, most likely with a transaction. A separate, stateless message broker

component then polls and sends these messages. To deduplicate incoming requests, developers

can either rely on request idempotency, or implement our DARQ deduplication scheme with a

table and transactionally update it with the request. Other services may similarly be modified

to be CReSt-compatible and therefore resiliently compose with DARQ. Note that such solutions

generally introduce overhead in performance, and complexity, but applications may already do so

in practice (e.g., many applications already rely on transactional outboxes). Alternatively, services

may be engineered to causally log their state and use an approach similar to [62] to deduplicate

correctly after failure. We leave a more detailed study of integration strategies for future work.

Users can implement such composition in DARQ using a special type of message called activity.
Semantically, an activity is a self-message that encapsulates a piece of work to be done on some

external service. The processor is then free to execute some custom logic, most likely an RPC to

the external service in question, using the LSN of the self-message as a unique deduplication token.

Then, when the external service completes the request, the activity message can be marked as

complete and later removed from the system. Activities that execute on CReSt compliant services

guarantee resilience. For other services, DARQ regresses to the typical at-least-once guarantee

common in the cloud today by retrying activities. Note that most read-only requests can bypass

this mechanism, as they can be transparently retried if failed. Overall, activity support in DARQ is

similar to existing cloud workflow systems such as Durable Functions or Temporal, and is largely

captured by CReSt, using participant state to track individual activity progress.

4 SPECULATIVE EXECUTION
Even though DARQ correctly implements CReSt, the problem of performance remains — in the

previously presented scheme, each time a message flows through DARQ, it must be persisted,

which incurs a substantial latency overhead (up to 10ms if using cloud storage). Worse still, such

overhead is cumulative: the more messages sent, and the more disaggregated an application is,

the bigger the overhead. We propose a solution using distributed speculative execution, in which

messages are transmitted and processed before persistence. Obviously, when DARQ fails, some

processed messages or state may no longer be available, and current progress must be rolled back

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:12 Tianyu Li et al.

and replayed from earlier sources [37]. In this section, we briefly introduce how we implement

speculative execution and discuss the trade-offs of our solution.

4.1 Special-Case: Intra-Participant Speculation
Recall that in our earlier formulation, DARQ is a separate entity from the processor that attaches

to it and provides compute capabilities. Consequently, one might assume that DARQ must persist

messages before exposing them to the attached processor, as the processor may survive DARQ

failure and continue operating on lost state. That said, processors interact with the rest of the

DARQ system exclusively through message-passing that DARQ intermediates. Because DARQ

is a log underneath the hood, any result of a step must be ordered behind the input to the step

(i.e., consumed messages), and only recovered if the input is recovered because the log guarantees

prefix recovery by definition. As a result, if DARQ sends messages to the attached processor before

persistence and fails, processing of lost messages is transparent to other participants as the effects

will have been lost as well. The processor, however, will have local state corresponding to rolled

back steps and must recover to a point that corresponds to the recovered DARQ state, which can be

achieved simply by erasing the processor state and treating the case as one of processor failure. To

summarize, intra-participant speculation allows DARQ to safely expose uncommitted messages to

attached processors without special handling while maintaining, on condition that DARQ recovery

prompts a processor restart. Because we assume that processors fail more often than DARQ, we

believe this cost to be acceptable for most deployments and therefore enable intra-participant

speculation by default.

4.2 General Speculation
With general speculation, DARQ nodes send and consume messages to/from each other before

they are persistent. Doing so removes persistence from the execution critical path, and can result

in significant speed-ups for deep message-passing chain and/or slow storage, both of which are

common in modern cloud environments [44]. However, general speculation leads to increased

complexity in failure recovery – compared to the special case from before, a DARQ failure may

result in losing some speculative steps but retaining (partial) effects of them in other surviving

DARQ nodes. To make matters worse, these leftover effects might have been persisted or even

exposed to external observers.

To solve this problem, we design and implement a rollback-based recovery scheme based on a

modified version of the Distributed Prefix Recovery algorithm [50]. On a high-level, a consistent

message-passing system state requires that if a participant’s state reflects receiving a message,

then the state of the sender reflects sending that message [33]. This produces a natural notion of

dependency across speculative CReSt steps – a step 𝑠 depends on step 𝑡 if 𝑠 speculatively consumed

a message𝑚 that was produced by 𝑡 . Our solution explicitly tracks such dependency by appending

tracking information to each message. Each DARQ instance then locally accumulates dependency

information; a distinguished coordinator node periodically joins information across DARQ nodes

to obtain a global dependency graph. Upon failure, some speculatively executed steps are lost, and

to restore the system to a consistent state, one must explicitly roll back any steps that depend

on lost steps. In our solution, the coordinator node is responsible for detecting failures (through

heartbeats, etc.), computing the rollback set from the dependency graph, and orchestrating such

a rollback with all affected DARQ nodes. Importantly, if a step, and all of its dependencies are

persistent, it will never be rolled back, and is therefore considered stable. The dependency graph

also allows the coordinator to compute the set of stable steps, and external observers may choose

to only observe effects from stable steps if they do not wish to be exposed to the complexity of

rollbacks. For such observers, the speed-up of speculation stems from parallelism of persistence –

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:13

a speculatively executed message may be persisted in parallel with its dependencies, instead of

waiting on them first.

To summarize, general speculation significantly reduces the persistence overhead of DARQ; in

return, doing sorequires additional resources for orchestrating dependency tracking and failure

recovery; effects of failures are amplified by general speculative execution, as the loss of a DARQ

node may cause all of its dependents to also restart. That said, as we show in Section 6, general

speculation tends to lead to significant speed-ups in scenarios where failures are infrequent.

The key challenges in our implementation involve low-overhead dependency tracking, efficient

computation of stable and rollback sets, coordinator selection and maintenance, and various

concurrency conditions in distributed, asynchronous systems. The details of our solution is beyond

the scope of this paper, and we leave this discussion for future work.

5 APPLICATIONS AND EXPERIENCE
In this section, we demonstrate the utility of DARQ by sketching how we build various resilient

cloud applications using DARQ, and provide a brief experience report.

5.1 Case Study: Stream Processing
As mentioned in Section 2, each stream operator (e.g., map, aggregate) can be thought of as a

processor performing CReSt steps, receiving data items as message from upstream and sending

results downstream. We now sketch the implementation of several representative types of stream

operators in DARQ with a focus on practical performance considerations.

Stateless Operators: Stateless operators such as maps and filters are typically early in a stream

processing pipeline and must support high ingestion rate. A naïve implementation using DARQ

would perform a step for every input message, which fills the DARQ log with completion records

and limits throughput under high input rate. An efficient implementation can offset this with

batching, waiting until several messages have been processed to submit a step that consumes them

as a unit, generating only one completion record in addition to outgoing messages [32]. As expected,

there are trade-offs developers should consider: larger batch sizes lead to higher throughput but

increases processing delay as processing of previous messages is not exposed until later messages

arrive.

Stateful Windows:Window functions group stream events based on (typically) time and output

some aggregate for each window. Given a windowing scheme, a DARQ processor maintains a list

of currently open windows, and continuously incorporates events into the partial aggregate for

each window. Assume for the sake of illustration that we are implementing a tumbling window

with a short window length 𝑡 and some small slack (<< 𝑡) to account for out-of-order events. Then,

the local state of a DARQ processor consists of at most two currently open windows, their starting

and ending timestamp, and the (partial) aggregate. In our implementation, DARQ performs a step

only when a window closes, at which point DARQ consumes all processed messages, persists local

state, and emits the aggregate. This is similar to batching in stateless operators, except that window

lengths serve as natural batch boundaries. Larger window sizes may warrant intermediate steps

that consume previous messages but yield only a self-message to reduce replay time on recovery.

Aggregates: Lastly, consider stream operators that continuously accumulate local state from an

input stream (without necessarily outputting a stream, similar to tables in KafkaStreams [9]), often

with larger local state than window operators. For example, one such operator may group input

events by some key and count the occurence of each. As described in Section 3, processors can

persist large state by using DARQ as a write-ahead log, sending self-messages of incremental state

deltas. Similar to before, our aggregate operator implementation performs batched steps, either

based on the number of events or time elapsed. A batched step consumes all processed messages

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:14 Tianyu Li et al.

and yields a small delta record as self-message. On failure and recovery, DARQ streams such

self-messages to the processor so it can replay and restore its state. Users use the checkpointing

mechanism outlined in Section 3 to periodically compact delta records and reduce replay time on

recovery.

Example Application and Discussion. Consider a search trend alert system in the cloud –

each data item in the input stream models a search request, including the string search term, a user

id, the user’s IP address, and the timestamp at which the search was issued. We are provided with a

list of terms of interest, and want to monitor and receive alerts if certain terms see an unexpected

surge in search frequency (e.g., a surge in searches for fever remedy in a region may be of interest

to relevant public health officials). In stream processing terms, this task can be split into three

processors:

• Preprocessing. This processor filters the input data based on search terms, and maps each term to

a coarse-grained region code using the IP information.

• Windowed Aggregate. This processor counts the number of each relevant search term for each

region using a tumbling window based on event time.

• Anomaly Detection. This processor maintains local state about past window outputs and runs an

anomaly detection function to decide if an event should be emitted.

We implement this application in both DARQ as described earlier and KafkaStreams [23, 68], which

is widely used in the industry and offers exactly-once stream processing on top of the equally

popular Kafka system [7]. In our experience, both implementations took around 10 developer-hours

and a few hours of performance tuning and debugging. Note here that DARQ is more directly

comparable to Kafka as the underlying storage and messaging system, rather than KafkaStreams,

which is a user library. The core DARQ stream processing implementation consisted of 280 lines of

C# code, whereas the KafkaStreams implementation consisted of 172 lines of Java code. Although

the two projects are not directly comparable (due to differences in languages and libraries), this

serves to show that building streaming application with DARQ is similarly straightforward as

with a specialized library. Compared to Kafka however, DARQ-based stream processing is more

composable under the CReSt model. For example, DARQ-based resilient workflows may directly

invoke DARQ-based stream processing without loss of resilience, whereas workflow systems must

treat Kafka as an external system and apply additional failure-handling logic. Such composability

is possible because CReSt participants orchestrate resilience with each other through a minimal

message-passing interface rather than through more complex mechanisms such as multi-participant

transactions. In this sense, it is possible to make Kafka similarly composable by providing a CReSt
wrapper around it, but as we show in Section 6, Kafka’s support for its richer feature set has

performance overheads compared to a minimalistic implementation of CReSt such as DARQ.

5.2 Case Study: Resilient Cloud Workflow
Cloud workflows chain multiple service invocations together into a larger program resiliently.

Compared to stream processing, workflows are typically less demanding in raw throughput, but

put more emphasis on flexibility and generality of the programming model. In the remainder of

this subsection, we first show how to implement a simple workflow with DARQ from scratch; then,

we show how existing feature-rich workflow systems such as Azure Durable Functions [15] can be

modified to run on DARQ.

Simple Workflow. Consider a simple case where the workflow is encoded as a static task

graph of idempotent tasks (passing results as messages along the edges). Assuming each task of

the workflow executes on a CReSt participant (the host) implemented with DARQ, there are two

primitives that DARQ must support: a fork operation that spawns tasks after a previous task is

finished, and a join operation that starts a task after all previous tasks are finished. To fork a task in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:15

DARQ, the participant sends completion messages to the hosts of all subsequent tasks. To join tasks,

the host of the subsequent task is first loaded with dependency information (e.g., the task to start𝐶

is dependent on the completion of previous tasks𝐴 and 𝐵). Upon receiving the completion message

from the fork primitive, the host internally updates the dependency set of assigned tasks, and starts

the task if all dependencies are completed. To ensure fault tolerance, each task corresponds to a

step – at the end of the task, the host performs a step that consumes completion message from

previous tasks and emits completion message to downstream tasks. The atomicity of this step

ensures that either all tasks are eventually started, or that none of them are started and the initial

task is replayed. For long running tasks, developers can optionally perform intermediate steps that

consumes completion messages from previous tasks and update internal host state to mark the

task as started (potentially along with any intermediate state so tasks do not restart from scratch

on recovery).

Azure Durable Functions. DF has a frontend that translates user code into workflows, imple-

ments higher-level abstractions such as critical sections, and schedules them dynamically with

load-balancing. The underlying resilient infrastructure is represented as a series of atomic com-

putation units under the serverless message-passing model [30, 31], which prescribes a series of

stateful instances each fetching, executing, and committing work items from instance-local queues.

Thus, DF can map directly to CReSt, with stateful instances as participants and work items as steps.

Note that, because instances are fine-grained, it is often advantageous to group them into coarser

partitions, and treat each partition as a CReSt participant. This is how the Netherite backend for

DF operates [30]. In contrast to DARQ, Netherite relies on external persistent event queues (e.g.,

Azure EventHubs), a persistent key-value store for participant state, and a local commit log. DARQ

replaces all of these infrastructures and allows for DF to directly work on top of DARQ through a

straightforward translation layer.

To validate that DARQ is suitable for DF workloads, we extract traces by instrumenting real DF

runs and build a DARQ application to execute these traces, bypassing the complex DF frontend.

These traces encapsulate each processing step DF took at each Netherite workers, including the

messages sent and received, their size, any local instance state update, and the amount of time user

code took to execute as part of the DF step, capturing all the dynamic scheduling and load-balancing

performed by the DF frontend. We use this prototype as part of our evaluation scheme in Section 6

to compare the efficiency of DARQ against Netherite, and leave a more thorough integration with

DF as future work.

6 EVALUATION
We study the performance of DARQ and DARQ-powered systems in comparison to existing

solutions under various configurations. We also evaluate the performance of DARQ using a series

of microbenchmarks. Specifically, we focus on answering the following research questions:

• Do DARQ-powered systems achieve resilience with comparable or improved performance com-

pared to hand-crafted solutions?

• Does speculative execution improve application latency?

• Is DARQ scalable and economical as a cloud building block?

• Can DARQ tolerate failures and deliver acceptable recovery performance under the fail-restart

model?

6.1 Workloads and Benchmark Setup
We implement DARQ as a C# service deployed on Azure, with C# producer/processor clients. As

mentioned, DARQ is built on top of the FasterLog [19] library, which works with a variety of

storage backends. We experiment both with disks attached to Azure virtual machines, and the more

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:16 Tianyu Li et al.

Kafka-EO Kafka-AO DARQ DARQ-Speculative0

50

100

150
Th

ro
ug

hp
t (

K
ev

en
t/s

)

0

100

200

300

400

La
te

nc
y

(m
s)

Fig. 5. Streams Latency and Throughput

economical but slower Azure blob storage [22]. Processors can either run in the same process as

DARQ for performance, or be fully remote. To fully stress DARQ, We run most mirobenchmarks

on two high-end L48v3 [3] machines, each with (virtualized) 48-core 3rd Gen Intel Xeon Platinum

8370C (Ice Lake) 2.8GHz processors, 384 GiB of memory and 6 × 1.92TB directly-mapped local

NVMe storage. For larger benchmarks, we use a cluster of the cheaper DS14v2 [2] machines with

(virtualized) 16-core Intel Xeon Platinum 8272CL 2.60GHz processors and 112 GiB of memory.

All machines are colocated within the same proximity group [4] with accelerated networking

enabled [18].

To understand how DARQ performance translates to real application performance, we implement

the 2 prototype systems modeling stream processing and cloud workflow execution as described in

Section 5, and compare them against real-world solutions currently deployed. For all experiments,

we enable intra-participant speculation by default, and optionally enable general speculation when

specified.

6.2 End-to-end Benchmarks
For all benchmarks in this section, we use a cluster of DS14v2 machines in conjunction with Azure

cloud blobs.

Streams – End-to-end. We deploy the example stream processing application described earlier

to both Kafka streams and our DARQ-based implementation. We use pre-computed, randomly-

generated workloads to emit events at a configurable, fixed rate into the system for 30 seconds.

We use Confluent Cloud’s fully managed Kafka offering and deploy in the same Azure data center

as our test machines. In Figure 5, we report the throughput and latency of the stream processing

application as before, we ramp up our event issue rate until throughput no longer increases for

throughput experiments, and report latencies measured when the system is at about half that load.

The final consumer of stream processing results is co-located with the initial producer, sharing

the same system clock for accurate latency measurement. We tune Kafka streams performance

according to published best practices [10, 11], and report results from both exactly-once processing

mode (EO) and the default at-least-once mode (AO). Note that all topics in Kafka are single-partition

for a fair comparison with DARQ, which is supported by a single underlying log. Typical production

Kafka deployments would run with more than one partition, but the same optimization can be

applied to DARQ systems as well. For DARQ, we run with 5ms checkpoints to Azure blobs storage

backend. We can see in Figure 5 that DARQ is competitive with Kafka stream’s performance,

achieving higher throughput and lower latency in general, although this may be an artifact of

engineering overhead present in the more feature-complete Kafka system. Meanwhile, latency is an

order-of-magnitude lower when DARQ runs in speculative mode, which presents a clear advantage

over Kafka. Overall, we have shown that despite DARQ’s generality, DARQ can perform on the

same order-of-magnitude of performance as existing solutions in stream processing.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:17

No-Persistence DARQ-Spec-nowait DARQ-Spec0

50

100
Th

ro
ug

hp
t (

K
ev

en
t/s

)

0

5

10

La
te

nc
y

(m
s)

Fig. 6. Diamond-workflow Latency and Throughput

0 5 10 15 20
Batch Size

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (M

 e
ve

nt
s/

s)

(a) Filter

0 10 20 30 40 50
Batch Size

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (M

 e
ve

nt
s/

s)

(b) Sum

Fig. 7. DARQ Stream Operator Throughput

Streams – Operators. To better understand the trade-offs in implementations of individual

DARQ stream operators, we study two simplified operators: a filter operator and a sum operator.

Recall from Section 5 that the key performance booster in DARQ stream operator implementation

is batch size. For the filter processor, a batched implementation submits one step to consume input

messages and output filtered messages for every 𝑛 messages processed; similarly, for the sum

operator, a batched implementation persists its local counter as a self-message and consume input

messages for every 𝑛 messages processed. To quantify this the speed-up, we pre-load 10M 8-byte

integer messages onto DARQ, and measure the time it takes for DARQ to process them, varying

𝑛 for each operator. We construct the workloads such that the filter operator has a selectivity of

around 10%. As shown in Figure 7, batching doubles the performance of filter and almost quadruples

the performance of sum. Such benefits are mostly attainable with small batches, leaving the impact

of batches on replay time and latency minimal. This is because the overhead of small batches comes

in the form of additional completion records, which takes up space in the log and detract from

the effective I/O bandwidth used for user data. As batch size increases, the ratio of user data to

completion records rapidly increases, leading to diminishing returns.

ResilientWorkflows: Diamond.Wefirst study the performance of DARQ on a simple workflow,

where one task starts two other tasks, and executes an other task when both are finished – we call

this the “diamond benchmark” due to the diamond shape of the task graph. Each task performs

trivial work, so that the workflow stresses the orchestration system rather than compute. We

schedule tasks such that each of the 4 tasks in a workflow execute on a different machine. We

implement a non-resilient baseline using sockets and an in-memory task queue as the baseline,

which represents the theoretical upper limit of performance in a failure-free setting. For DARQ, we

run two configurations – one where DARQ runs speculatively on Azure blob storage backend, and

another where DARQ returns without waiting for commit (i.e., latency for components speculatively

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:18 Tianyu Li et al.

executing without outputing to an external uswer). We fire 500000 workflows total and measure

throughput as well as end-to-end latency, shown in Figure 6. The results show that DARQ achieves

about 70% of the baseline throughput, which showcases that DARQ is a lightweight solution. DARQ

latency is unsurprisingly an order-of-magnitude higher than the theoretical-best baseline, but as

we can see from DARQ-nowait, most of the latency stems from the slow cloud storage. With global

speculative execution, DARQ-based workflows achieve comparable, sub-millisecond latency as the

baseline.

Resilient Workflows: Netherite. For more complex workloads, we turn to cloud resilient

workflows. For this benchmark, we use the previously described DARQ-based trace simulator to

execute traces collected from Microsoft’s Netherite workflow engine. In our simulator, we assign

one DARQ to each Netherite worker, and pre-load the steps that worker took in the trace in-memory

of the DARQ processor. Each time a processor encounters a message, it looks up the step that

consumed it in the trace and checks if it has received all the messages that the step consumed; if so,

the step is “executed” by sleeping for the the amount time user code took to execute in DF, and

then the output messages sent. We also simulate local state update by sending it to the processor

as a self-message. All messages are padded with arbitrary bytes up to the size specified by the trace.

We take representative traces from the example DF applications from [30], with a “hello world”

workflow that calls several tasks in sequence(hello), and a banking workflow that implements

reliable transfer of currency between accounts using critical sections (bank).
Note here that the production version of Netherite uses Azure EventHubs as the underlying

messaging fabric, which is expensive. For a fair comparison, we modify Netherite to use simple

http connections as the messaging fabric. We report our results in Figure 8 against the timings of

the executed DF traces. In these graphs, we plot the number of completed steps over time, and plot

a vertical dashed line when an engine is finished. For the hello benchmark, Netherite-http slightly

outperforms DARQ, as the benchmark features no cross-partition communication, and Netherite

implements lightweight single-node speculative execution. For the bank workload, which features

cross-node dependency and deep invocation pipelines, DARQ significantly outperforms Netherite.

In general, speculative execution does not help with throughput. We plot the latency of end-to-end

workflows in the hello and bank benchmarks in Figure 9. We can see that DARQ, particularly with

speculation, significantly reduces workflow latency of the bank scenario, which features cross-

worker communication. For the simpler hello benchmark that runs the entire workflow on a single

node in steps, Netherite’s optimization around single-worker speculative execution greatly reduces

its latency, outperforming non-speculative DARQ. However, with speculation turned on, DARQ

is competitive with the optimized Netherite implementation. We have also run this experiment

on other workloads from [30] and observe that DARQ either outperforms or is competitive with

Netherite, but do not plot them here due to limited space.

To summarize, DARQ-based workflow systems have some overhead when compared to a dedi-

cated engine like Netherite in optimized cases (e.g., hello), but offer competitive or even superior

performance in cases where fault-tolerance cross-machine coordination dominates execution cost.

6.3 DARQ Service Metrics
We now present a suite of benchmarks on the DARQ service itself to understand its performance,

and the cost of its CReSt guarantees. All messages are randomly generated 1 KB byte arrays.

Producer Performance. We first study the performance of DARQ producers, which limits how

fast DARQ can ingest work and deliver messages internally to each other.We issue 1million enqueue

requests from a single client machine that is allowed to have 𝑤 requests outstanding at a given

time. For throughput, we report results after incrementing𝑤 until throughput does not improve.

We report our measurement results on two L48v3 machines in Table 1. As shown, DARQ can

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:19

Netherite-EH Netherite-HTTP DARQ DARQ-Spec

0 10 20 30
Time (s)

0
200
400
600

k
#S

te
ps

(a) hello

0 4 8 12
Time (s)

0
40
80

120

k
#S

te
ps

(b) bank

Fig. 8. CReSt Trace Throughput

Average P99

Neth.
EH

Neth.
HTTP

DARQ DARQ
Spec

0

1000

2000

La
te

nc
y

(m
s)

(a) bank

Neth.
EH

Neth.
HTTP

DARQ DARQ
Spec

0

30

60

90

La
te

nc
y

(m
s)

(b) hello

Fig. 9. CReSt Trace Latency

ingest around 650k operations per second, or 650 MB/s in throughput on a fast SSD. In comparison,

FasterLog, the underlying log storage engine of DARQ, can achieve raw throughput of 1.59M op/s.

The DARQ overhead is primarily from remote request processing and additional processing to

deduplicate and validate incoming messages, and from maintaining data structures used to ensure

DARQ stepping semantics. We also measure the throughput of DARQ with deduplication and

validation turned off, which yields around 10% speedup on local SSD. To study the impact of storage

performance on DARQ, we also run the same benchmark on Azure Blobs with a simulated storage

device entirely in-memory. We can see that DARQ becomes bottlenecked by processing rather than

storage performance at around 900k op/s, while on slower storage, the cost of storage dominates

(around 30MB/s throughput for single blobs). For latency, we report sampled results after tuning

𝑤 such that we achieve around half of the maximum throughput, to limit the impact of queueing

delay on our measurements. We can see in Table 2 that DARQ achieves sub-millisecond latency for

non-persistent enqueue, and less than 5 ms on average for a (batched) persistent enqueue. Note

that similar to DPR operations in [50], DARQ operations are always first completed in-memory and

acked, at which point speculative processors can consume the message and truncate (if any) out

messages from the originating DARQ. Commit latency is the relevant metric for non-speculative

DARQ processors or other producers that require confirmation of persistence. We also report

latency on other storage backends, and see that slower storage (such as cloud blobs) only affects

non-speculative latency, as expected.

Processor Step Performance. We now study step performance of DARQ, similarly on the

performant L48v3 machines. We first measure throughput of DARQ steps by pre-loading 1 million

1KB input messages to DARQ, and processing them using a trivial processor that immediately

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:20 Tianyu Li et al.

Storage DARQ DARQ No-Val Raw FasterLog
Memory 829.74k op/s 923.56k op/s 2.75M op/s

Local SSD 641.28k op/s 676.18k op/s 1.59M op/s

Page Blob 30.17k op/s 30.52k op/s 34.54k op/s

Table 1. DARQ Producer Throughput

Storage Median Latency P99 Latency Std. Dev.
SSD-Completion 0.12 ms 0.19 ms 0.89 ms

SSD-Commit 3.27ms 9.59ms 2.45 ms

Blob-Completion 0.08 ms 0.22 ms 0.13 ms

Blob-Commit 6.66 ms 18.94 ms 3.44 ms

Table 2. DARQ Producer Latency

Processor DARQ DARQ No-Val Raw FasterLog
Colocated-ssd 741.84k op/s 959.69k op/s 1.01M op/s

Remote-ssd 215.15k op/s 250.31k op/s -

Colocated-blob 33.22k op/s 33.45k op/s 33.54k op/s

Remote-blob 32.32k op/s 32.83k op/s -

Table 3. DARQ Processor Step Throughput

marks encountered messages as completed. Recall that to perform a DARQ step, the processor has

to first scan the consumed messages in DARQ, compose the step locally, and then submit the step

to DARQ as a local function call or RPC; DARQ needs to validate that the steps are well-formed

and enforcing that it only steps previously unstepped messages. We run this microbenchmark with

both a co-located processor and a remote processor, and report the results in Table 3. As seen, a

co-located DARQ processor can process more than 700k operations per second, which is more than

the ingestion capacity of a single DARQ. Remote DARQ processors, in comparison, see a reduced

throughput of just above 200k operations per second, mostly due to remote processing overhead.

We also run the same benchmarks where we disable various parts of the step and measure the

resulting throughput in Table 3. Here we can see that the write-back to DARQ is the most significant

contributor to overhead, and step validation only presents a small overhead. Unsurprisingly, when

running with cloud storage, storage becomes the bottleneck compared to processing.

Effect of Speculation. Here, we study the effect of speculation on DARQ performance in

detail. We use a microbenchmark where we enqueue 1 million messages into a DARQ and attach a

co-located processor that steps by reflecting the message back to its sender (which locally hosts

a “sink” DARQ), which measures the latency between sending of a message and receiving it in

return. This benchmark is indicative of the cost of composition, as it corresponds to the overhead

DARQ introduces between starting a step and subsequent work (i.e., when downstream DARQ

processors are able to process the output messages). We run the same benchmark under two

scenarios – one where we increase the delay between each commit to simulate slow storage, and

one where we generalize the reflection benchmark to route messages through more DARQs before

eventually returning to the sender. We show the results in Figure 10 as measured on the weaker

but more numerous DS14v2 machines. As expected, speculative execution essentially “parallelizes”

storage overhead, and performs much better under high storage latency or when with many storage

roundtrips. The cost of speculative execution is in the complexity of engineering and in recovery

performance, which we study later.

Scalability Discussion. Even though DARQ supports high throughput, it is a serial bottleneck

due to its log-structured implementation. We have not found this to be an issue in our experience,

as in many applications, steps are computed and such computations are more likely to become a

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:21

Non-Speculative Speculative

10 20 30 40
Commit Latency (ms)

0

10

20

30
M

ed
. L

at
en

cy
 (m

s)

(a) Varying Device Latency

0 4 8 12 16
Pipeline Depth

0

50

100

150

Av
g.

 L
at

en
cy

 (m
s)

(b) Varying Pipeline Depth

Fig. 10. Effect of Speculation on Latency

bottleneck before raw I/O performance of DARQ. In the case where applications do bottleneck

on DARQ throughput, developers can resort to adding parallel devices/faster storage to boost I/O

performance, or structure their applications to benefit from multi-DARQ parallelism.

6.4 Failure Recovery
Lastly, we study the performance of DARQ under failure.

Microbenchmarks.We first study the performance of DARQ recovery in controlled microbench-

marks on L48v3s. In these experiments, we randomly populate DARQ with some amount of steps,

and then manually recover from the checkpointed state and measure the time it takes before the

processor is ready for normal operation (the first message reaches user code for consumption). Note

that this time does not include any time the user processor may take to reconstruct its local state

from DARQ as that is application-dependent. We show the results in Figure 11 varying the size of

the log to recover (measured by scale factor of the generation process, one scale factor corresponds

to roughly 40MB of log to replay). We first study recovery when the DARQ service is down and

must be reconstructed from storage. We can see that recovery speed here is largely dependent on

the speed of the underlying storage — for slower Azure blob storage, it takes significantly longer to

recover than fast, in-memory simulated storage. Overall, however, recovery speed is linear with

the size of the log to replay, and as we will show later, the average size of the log to replay in

a realistic application tends to be very small. Another scenario is when the DARQ service does

not fail, but attached processors fail or are replaced. In this scenario, replay is still necessary to

reconstruct processor local state (recall that processors expect self-messages upfront and only

incomplete messages on replay), but it is unnecessary to replay from storage, as the tail is likely to

be in memory in the DARQ service. Consequently, as shown, recovery performance is in general

better than DARQ failures, and is no longer dependent on storage backend performance.

End-to-end Benchmarks. To see recovery in action, we use the stream processing benchmark

from before and introduce a failure in the middle of an extended (90s) run on DS14v2s. We show

results of failure from both speculative and non-speculative modes. For brevity, we only show

results of failure on the second processor (windowed aggregator); failures on other processors yield

similar results but at a slightly different scale due to the difference in steady-state throughput at

each stage of the stream processing. We show our results when an entire DARQ node is killed in

Figure 12. Here we can see that for both configurations, there is a latency spike when a failure

occurs, as we wait for the DARQ service to re-establish itself and restore all previous connections,

which takes around 300ms in our measurement. The service is then quickly back to normal for

the non-speculative DARQ. For speculative DARQ, the system performs extra work for a DPR

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:22 Tianyu Li et al.

Blob SSD Mem

s=1 2 4 8 16 32 64 128
102

103

104

La
te

nc
y

(m
s)

(a) DARQ Recovery

s=1 2 4 8 16 32 64 1280

50

100

La
te

nc
y

(m
s)

(b) Processor Recovery (local)

s=1 2 4 8 16 32 641280

200

400

600

La
te

nc
y

(m
s)

(c) Processor Recovery (remote)

Fig. 11. Recovery Microbench

0 20 40 60 80
Time (s)

0
1000
2000
3000
4000

La
te

nc
y

(m
s)

(a) Non-Speculative

0 20 40 60 80
Time (s)

0
1000
2000
3000
4000

La
te

nc
y

(m
s)

(b) Speculative

Fig. 12. Recovery from DARQ restart

rollback of other processors, which causes both the latency spike to be larger, and for recovery to

take longer.

We also show DARQ performance when introducing a processor failure in Figure 13. As there

is no need to restart the DARQ server, processor recovery is merely a matter of replaying the

outstanding portion of the log, which only takes a few milliseconds, and is barely noticeable on

the plot. This serves to show that DARQ-powered systems can tolerate compute node churn quite

well without excessive overhead. To better understand the outstanding log size during our run,

we sample untruncated DARQ size and show the results in Figure 14. We can see here that our

aggressive GC scheme (which truncates the log at 1MB granularity) successfully limits the replay

size to around 1.5 MB throughout the benchmark.

7 RELATEDWORK
Resilient Systems. The concept of end-to-end application resilience in database systems dates

back to [28] and [27]. Ambrosia uses DBMS-style logging to provide resilience for general-purpose

message-passing distributed programming; however, the Ambrosia solution is built as sidecars [24]

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:23

0 20 40 60 80
Time (s)

0
50

100
150
200

La
te

nc
y

(m
s)

(a) Non-Speculative

0 20 40 60 80
Time (s)

0
50

100
150
200

La
te

nc
y

(m
s)

(b) Speculative

Fig. 13. Recovery from processor restart

0 20 40 60 80
Time (s)

0
1
2
3
4

DA
RQ

 R
ep

la
y

Si
ze

 (M
B)

Fig. 14. DARQ replay size during benchmark

to applications running on standalone machines. CReSt (and by extension, DARQ) is inspired

by Ambrosia, but instead uses an abstract I/O automata model to define resiliency. The DARQ

solution focuses on the service-oriented cloud model and is a storage service, distinguishing

it from the Ambrosia model. Other than Ambrosia, Netherite [30] and Temporal [21] similarly

build resiliency into message-passing systems, but are more specialized towards their respective

programming model, directly interfacing with application developers. Recent work [65, 72] have

proposed modeling workflows as dataflow problems, which makes it possible to repurpose existing

work for exactly-once stream processing for resilient workflows. In contrast, CReSt and DARQ are

geared towards infrastructure builders, who will likely use DARQ to build systems like Netherite,

Temporal, and stream processing. There has also been implementation of virtual resiliency at the

OS/VM level [34, 36, 52] but these works are typically much more low-level and therefore rely on

high-cost physical logging, whereas CReSt and DARQ only log logical steps and transitions.

Transactions, Queuing, and Streaming Systems. Another way to achieve resilience in cloud

systems is through multi-node transactions [35, 41, 49]. One might argue that CReSt is a form
of transaction in that it is an atomic, multi-operation primitive. We contend that while this is

conceptually true, CReSt is a highly specialized form of transactions for the use case of cloud

service composition. Most importantly, CReSt treats distribution and asynchronous communication

as first-class concepts in its formulation, making it more natural for existing distributed systems to

be modeled using CReSt. The inclusion of asynchrony in the CReStmodel also allows for implemen-

tations of CReSt that does not require two-phase commit, as general transaction implementations

do. Recent systems such as Apiary [45] and DBOS [63] attempt to build distributed systems on

top of a distributed transaction processing layer, which would allow disparate applications to

perform ACID transactions across them, sidestepping the problem CReSt and DARQ solve. Other

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:24 Tianyu Li et al.

systems [61, 66, 71] similarly use transactions to orchestrate virtually resilient executions between

components; these systems are generally easier to work with than CReSt or DARQ, but are less
general as a result, as developers must extend their transaction mechanisms to cover any new

components. DARQ itself is inspired by classical (transactional) queuing systems [29, 42, 55], and

more recently, streaming systems such as Kafka [68] and Azure EventHubs [25]. Of particular

note is [29], which proposed using queues that orchestrate transactions with databases to ensure

recoverable and resilient client request handling. CReSt similarly relies on atomicity between

queues and some other data store, but chooses to co-locate queues with the data store on a single

node as the atomicity mechanism instead of transactions. DARQ’s log-based implementation is also

largely inspired by earlier write-ahead logging techniques [54, 56] from the database community,

and recent log-based solutions for distributed systems [26, 43].

Optimistic/Rollback-Replay Recovery. To our knowledge, speculative execution in distributed

systems is first proposed by [58]. DARQ’s reliance on speculative execution can be viewed as a class

of optimistic recovery [67]. We make heavy use of the recent DPR work [50], which in turn builds

on a wealth of prior work of rollback-recovery systems [37]. Such solutions are also implemented

recently in dataflow [38], streaming [62], and actor systems [69] to great effect.

8 CONCLUSION
Implementing fault-tolerance is increasingly important yet difficult and error-prone in today’s

highly distributed and disaggregated cloud environment. We presented CReSt, an abstraction for

building resilient cloud systems that extends the classical message-passing model with resilient

steps. We argue that many fault-tolerant cloud programming paradigm, such as stream processing

and workflows can be mapped to CReSt steps. We also design and implement DARQ, an efficient

framework that implements CReSt optimized for the cloud. Our benchmark shows that DARQ-

powered applications achieve resilience, are competitive in performance, and are easier to build

than from scratch. We believe CReSt and DARQ to be valuable tools in constructing fault-tolerant

modern cloud applications.

REFERENCES
[1] Amazon Step Functions. https://aws.amazon.com/step-functions/, retrieved 13-Oct-2022.

[2] Dv2 and DSv2-series. https://learn.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series, retrieved 13-Oct-

2022.

[3] Lsv3-series Virtual Machines. https://learn.microsoft.com/en-us/azure/virtual-machines/lsv3-series, retrieved 13-Oct-

2022.

[4] Proximity Placement Groups. https://learn.microsoft.com/en-us/azure/virtual-machines/co-location, retrieved 13-Oct-

2022.

[5] Saga Pattern. https://microservices.io/patterns/data/saga.html, retrieved 13-Oct-2022.

[6] Transactional Outbox Pattern. https://microservices.io/patterns/data/transactional-outbox.html, retrieved 13-Oct-2022.

[7] Apache Kafka. https://kafka.apache.org/, retrieved 15-Jan-2023.

[8] Kubernetes Pod Lifecycle. https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/, retrieved 18-Jan-2023.

[9] Streams and Tables in Apache Kafka: A Primer. https://www.confluent.io/blog/kafka-streams-tables-part-1-event-

streaming/, retrieved 19-Jan-2023.

[10] Confluent Developer – Optimizing for Latency. https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.

html, retrieved 26-Sept-2022.

[11] Fine-tune Kafka performance with the Kafka optimization theorem. https://developers.redhat.com/articles/2022/05/03/

fine-tune-kafka-performance-kafka-optimization-theorem#, retrieved 26-Sept-2022.

[12] Amazon Lambda. https://aws.amazon.com/lambda/, retrieved 28-Aug-2022.

[13] Amazon S3. https://aws.amazon.com/s3/, retrieved 28-Aug-2022.

[14] Azure Cosmos DB. https://azure.microsoft.com/en-us/services/cosmos-db/, retrieved 28-Aug-2022.

[15] Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-

overview, retrieved 28-Aug-2022.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/lsv3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/co-location
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/transactional-outbox.html
https://kafka.apache.org/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/
https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/
https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.html
https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.html
https://developers.redhat.com/articles/2022/05/03/fine-tune-kafka-performance-kafka-optimization-theorem#
https://developers.redhat.com/articles/2022/05/03/fine-tune-kafka-performance-kafka-optimization-theorem#
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:25

[16] Azure Functions. https://azure.microsoft.com/en-us/services/functions/, retrieved 28-Aug-2022.

[17] Azure Service Fabric. https://azure.microsoft.com/en-us/services/service-fabric/, retrieved 28-Aug-2022.

[18] Create a Windows VM with accelerated networking using Azure PowerShell. https://docs.microsoft.com/en-us/azure/

virtual-network/create-vm-accelerated-networking-powershell, retrieved 28-Aug-2022.

[19] FasterLog and the Microsoft FASTER project. https://github.com/microsoft/FASTER, retrieved 28-Aug-2022.

[20] Kubernetes. https://kubernetes.io/, retrieved 28-Aug-2022.

[21] Temporal. https://temporal.io/, retrieved 28-Aug-2022.

[22] Azure Blob Storage. https://azure.microsoft.com/en-us/services/storage/blobs/, retrieved 30-Aug-2022.

[23] Kafka Streams. https://kafka.apache.org/documentation/streams/, retrieved 30-Aug-2022.

[24] Sidecar Pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar, retrieved 30-Aug-2022.

[25] Azure Event Hubs. https://azure.microsoft.com/en-us/services/event-hubs/, retrieved 31-Aug-2022.

[26] M. Balakrishnan, C. Shen, A. Jafri, S. Mapara, D. Geraghty, J. Flinn, V. Venkat, I. Nedelchev, S. Ghosh, M. Dharamshi,

J. Liu, F. Gruszczynski, J. Li, R. Tibrewal, A. Zaveri, R. Nagar, A. Yossef, F. Richard, and Y. J. Song. Log-structured

protocols in delos. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, page

538–552, New York, NY, USA, 2021. Association for Computing Machinery.

[27] R. Barga, D. Lomet, G. Shegalov, and G. Weikum. Recovery guarantees for internet applications. ACM Trans. Internet
Technol., 4(3):289–328, aug 2004.

[28] R. Barga and D. B. Lomet. Phoenix: Making applications robust. SIGMOD Rec., 28(2):562–564, jun 1999.

[29] P. A. Bernstein, M. Hsu, and B. Mann. Implementing recoverable requests using queues. SIGMOD Rec., 19(2):112–122,
may 1990.

[30] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon, C. S. Meiklejohn, and X. Zhu. Netherite:

Efficient execution of serverless workflows. Proc. VLDB Endow., 15(8):1591–1604, apr 2022.
[31] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S. Meiklejohn. Durable functions: Semantics for

stateful serverless. Proc. ACM Program. Lang., 5(OOPSLA), oct 2021.
[32] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill: A

high-performance incremental query processor for diverse analytics. Proc. VLDB Endow., 8(4):401–412, dec 2014.
[33] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems. ACM Trans.

Comput. Syst., 3(1):63–75, feb 1985.
[34] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus: High availability via asynchro-

nous virtual machine replication. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’08, page 161–174, USA, 2008. USENIX Association.

[35] U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running activities. In Proceedings of the 17th International
Conference on Very Large Data Bases, VLDB ’91, page 113–122, San Francisco, CA, USA, 1991. Morgan Kaufmann

Publishers Inc.

[36] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution replay of multiprocessor virtual machines.

In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’08, page 121–130, New York, NY, USA, 2008. Association for Computing Machinery.

[37] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv., 34(3):375–408, sep 2002.

[38] I. Gog, M. Isard, and M. Abadi. Falkirk wheel: Rollback recovery for dataflow systems. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’21, page 373–387, New York, NY, USA, 2021. Association for Computing

Machinery.

[39] J. Goldstein, A. Abdelhamid, M. Barnett, S. Burckhardt, B. Chandramouli, D. Gehring, N. Lebeck, C. Meiklejohn, U. F.

Minhas, R. Newton, R. G. Peshawaria, T. Zaccai, and I. Zhang. A.m.b.r.o.s.i.a: Providing performant virtual resiliency

for distributed applications. Proc. VLDB Endow., 13(5):588–601, Jan. 2020.
[40] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed file cache consistency. ACM

SIGOPS Operating Systems Review, 23(5):202–210, 1989.
[41] J. Gray. Notes on data base operating systems. In Advanced Course: Operating Systems, 1978.
[42] J. Gray and J. Gray. Queues are databases. In In Proceedings 7th High Performance Transaction Processing Workshop.

Asilomar CA, page 496. Prentice Hall, 1995.
[43] Z. Jia and E. Witchel. Boki: Stateful serverless computing with shared logs. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, SOSP ’21, page 691–707, New York, NY, USA, 2021. Association for

Computing Machinery.

[44] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar,

J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view on serverless

computing, 2019.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://github.com/microsoft/FASTER
https://kubernetes.io/
https://temporal.io/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kafka.apache.org/documentation/streams/
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://azure.microsoft.com/en-us/services/event-hubs/

117:26 Tianyu Li et al.

[45] P. Kraft, Q. Li, K. Kaffes, A. Skiadopoulos, D. Kumar, D. Cho, J. Li, R. Redmond, N. Weckwerth, B. Xia, P. Bailis,

M. Cafarella, G. Graefe, J. Kepner, C. Kozyrakis, M. Stonebraker, L. Suresh, X. Yu, and M. Zaharia. Apiary: A dbms-

backed transactional function-as-a-service framework, 2022.

[46] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst., 6(2):213–226,
jun 1981.

[47] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski. Data management in microservices: State of the practice,

challenges, and research directions. Proc. VLDB Endow., 14(13):3348–3361, sep 2021.

[48] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121,
December 2001), pages 51–58, 2001.

[49] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage system. 1976.

[50] T. Li, B. Chandramouli, J. M. Faleiro, S. Madden, and D. Kossmann. Asynchronous Prefix Recoverability for Fast Distributed
Stores, page 1090–1102. Association for Computing Machinery, New York, NY, USA, 2021.

[51] T. Li, B. Chandramouli, and S. Madden. Performant almost-latch-free data structures using epoch protection. In Data
Management on New Hardware, DaMoN’22, New York, NY, USA, 2022. Association for Computing Machinery.

[52] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual machine based on full system trace and replay. In

Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, page

101–110, New York, NY, USA, 2009. Association for Computing Machinery.

[53] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’87, page 137–151, New York, NY, USA, 1987.

Association for Computing Machinery.

[54] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory oltp recovery. In 2014 IEEE 30th
International Conference on Data Engineering, pages 604–615, 2014.

[55] C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Guenthoer, and M. Kamath. Exotica: A project on advanced

transaction management and workflow systems. SIGOIS Bull., 16(1):45–50, aug 1995.
[56] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A transaction recovery method supporting

fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162, mar

1992.

[57] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the r* distributed database management system.

ACM Trans. Database Syst., 11(4):378–396, dec 1986.
[58] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a distributed file system. SOSP ’05, page 191–205,

New York, NY, USA, 2005. Association for Computing Machinery.

[59] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual Technical
Conference (Usenix ATC 14), pages 305–319, 2014.

[60] J. Postel. Rfc0793: Transmission control protocol. Technical report, 1981.

[61] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and J. Ren. Realizing the fault-tolerance promise of cloud storage

using locks with intent. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 501–516, USA, 2016. USENIX Association.

[62] P. F. Silvestre, M. Fragkoulis, D. Spinellis, and A. Katsifodimos. Clonos: Consistent causal recovery for highly-available

streaming dataflows. In Proceedings of the 2021 International Conference on Management of Data, pages 1637–1650,
2021.

[63] A. Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, S. Mathew, D. Bestor, M. Cafarella, V. Gadepally, G. Graefe, J. Kepner,

C. Kozyrakis, T. Kraska, M. Stonebraker, L. Suresh, and M. Zaharia. Dbos: A dbms-oriented operating system. Proc.
VLDB Endow., 15(1):21–30, sep 2021.

[64] E. Soisalon-Soininen and T. Ylönen. Partial strictness in two-phase locking. In Proceedings of the 5th International
Conference on Database Theory, ICDT ’95, page 139–147, Berlin, Heidelberg, 1995. Springer-Verlag.

[65] J. Spenger, P. Carbone, and P. Haller. Portals: An extension of dataflow streaming for stateful serverless. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2022, page 153–171, New York, NY, USA, 2022. Association for Computing Machinery.

[66] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Hellerstein, and J. M. Faleiro. A fault-tolerance shim for

serverless computing. In Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[67] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans. Comput. Syst., 3(3):204–226, Aug. 1985.
[68] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J. Sax, J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta,

V. Madan, and J. Rao. Consistency and completeness: Rethinking distributed stream processing in apache kafka. In

Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, page 2602–2613, New York, NY,

USA, 2021. Association for Computing Machinery.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:27

[69] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov, and I. Stoica. Lineage stash: Fault tolerance off

the critical path. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, page 338–352,

New York, NY, USA, 2019. Association for Computing Machinery.

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. NSDI’12, page 2, USA, 2012.

USENIX Association.

[71] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and transactional stateful serverless workflows.

In Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation, OSDI’20, USA, 2020.
USENIX Association.

[72] W. Zorgdrager, K. Psarakis, M. Fragkoulis, E. Visser, and A. Katsifodimos. Stateful entities: Object-oriented cloud

applications as distributed dataflows. CoRR, abs/2112.00710, 2021.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Composable Resilient Steps
	2.1 Example Applications with CReSt
	2.2 Fail-Restart Model
	2.3 Implementing CReSt: A First Cut

	3 DARQ
	3.1 Processors and Self-Messages
	3.2 DARQ Implementation
	3.3 Integrating with Blackbox Services

	4 Speculative Execution
	4.1 Special-Case: Intra-Participant Speculation
	4.2 General Speculation

	5 Applications and Experience
	5.1 Case Study: Stream Processing
	5.2 Case Study: Resilient Cloud Workflow

	6 Evaluation
	6.1 Workloads and Benchmark Setup
	6.2 End-to-end Benchmarks
	6.3 DARQ Service Metrics
	6.4 Failure Recovery

	7 Related Work
	8 Conclusion
	References

