DARQ Matter Binds Everything: Performant and Composable
Cloud Programming via Resilient Steps

TIANYU LI*, MIT CSAIL, USA

BADRISH CHANDRAMOULI, Microsoft Research, USA
SEBASTIAN BURCKHARDT, Microsoft Research, USA
SAMUEL MADDEN, MIT CSAIL, USA

Providing strong fault-tolerant guarantees for the modern cloud is difficult, as application developers must
coordinate between independent stateful services and ephemeral compute and handle various failure-induced
anomalies. We propose Composable Resilient Steps (CReSt), a new abstraction for resilient cloud applications.
CReSt uses fault-tolerant steps as its core building block, which allows participants receive, process, and send
messages as a single uninterruptible atomic unit. Composability and reliability are orthogonally achieved by
reusable CReSt implementations, for example, leveraging reliable message queues. Thus, CReSt application
builders focus solely on translating application logic into steps, and infrastructure builders focus on efficient
CReSt implementations. We propose one such implementation, called DARQ (for Deduplicated Asynchronously
Recoverable Queues). At its core, DARQ is a storage service that encapsulates CReSt participant state and
enforces CReSt semantics; developers attach ephemeral compute nodes to DARQ instances to implement
stateful distributed components. Services built with DARQ are resilient by construction, and CReSt-compatible
services naturally compose without loss of resilience. For performance, we propose a novel speculative
execution scheme to execute CReSt steps without waiting for message persistence in DARQ, effectively eliding
cloud persistence overheads; our scheme maintains CReSt’s fault-tolerance guarantees and automatically
restores consistent system state upon failure. We showcase the generality of CReSt and DARQ using two
applications: cloud streaming and workflow processing. Experiments show that DARQ is able to achieve
extremely low latency and high throughput across these use cases, often beating state-of-the-art customized
solutions.

CCS Concepts: » Computer systems organization — Cloud computing; « Information systems — Cloud
based storage.

ACM Reference Format:

Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden. 2023. DARQ Matter Binds
Everything: Performant and Composable Cloud Programming via Resilient Steps. Proc. ACM Manag. Data 1, 2,
Article 117 (June 2023), 27 pages. https://doi.org/10.1145/3589262

1 INTRODUCTION

Modern cloud developers build applications by composing various distributed components such as
vendor services (e.g., Amazon S3 [13], Azure CosmosDB [14]), custom-built microservices (e.g., with

“Work started during internship at Microsoft Research.

Authors’ addresses: Tianyu Li, litianyu@csail. mit.edu, MIT CSAIL, Cambridge, Massachusetts, USA, 02139; Badrish
Chandramouli, badrishc@microsoft.com, Microsoft Research, Redmond, Washington, USA, 98052; Sebastian Burckhardt,
sburckha@microsoft.com, Microsoft Research, Redmond, Washington, USA, 98052; Samuel Madden, madden@csail.mit.edu,
MIT CSAIL, Cambridge, Massachusetts, USA, 02139.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART117

https://doi.org/10.1145/3589262

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-2531-8253
HTTPS://ORCID.ORG/0000-0002-8468-4037
HTTPS://ORCID.ORG/0009-0003-8873-7268
HTTPS://ORCID.ORG/0000-0002-7470-3265
https://doi.org/10.1145/3589262
https://orcid.org/0000-0003-2531-8253
https://orcid.org/0000-0002-8468-4037
https://orcid.org/0000-0002-8468-4037
https://orcid.org/0009-0003-8873-7268
https://orcid.org/0000-0002-7470-3265
https://doi.org/10.1145/3589262

117:2 Tianyu Li et al.

Kubernetes [20] or Azure Service Fabric [17]), and stateless compute (e.g., serverless FaaS [12, 16]).
The key challenge when building stateful applications in this highly distributed environment is
fault-tolerance. Despite the wealth of work in highly-available and reliable individual components,
developers must still painstakingly ensure they work together correctly upon failure [47].

Consider a simple example where service A must pass the result of a user request to another
service B, which processes the result and updates its state (e.g. for aggregation in analytics). Service
A may fail after sending the result to B, but before it persistently records that it has done so, leading
to duplicate results sent on recovery. Similarly, B may fail and lose the results after A delivers the
result, leading to lost data. To mask this complexity, developers want end-to-end resilience, defined
as behavioral indinstinguishability of the application from failure-free scenarios, except perhaps
with performance degradation due to failure handling.

Resilience is essential for applications with strong correctness requirements (e.g., involving
monetary transactions or irreversible physical effects); in other cases, it is a powerful abstraction
that hides distributed system complexity from the average user, simplifying user applications and
increasing user productivity. Such resilient systems are prolific in the modern cloud: for example,
batch processing systems such as Spark [70] transparently retry failed nodes to mask failures;
Netherite [30] and Ambrosia [39] leverage DBMS-style logging across heterogeneous machines,
Kafka Streams [68] implements consistent stream processing using persistent logs and cross-node
transactional writes, and Azure Durable Functions [15, 30] guarantee effectively-once execution of
composed serverless functions through a carefully implemented stateful messaging layer. These
solutions share many characteristics, such as dependency tracking, asynchronous checkpoints,
carefully defined and enforced atomicity scopes, message retries/deduplication, etc. But perhaps
the greatest commonality is that these solutions are highly complex, specialized, and difficult to
implement. To build a new resilient system, infrastructure developers must still design their own
mechanisms and handcraft their implementations, which is often time-consuming and error-prone.
Ideally, developers can build heterogeneous distributed components on a general abstraction and
compose them into resilient systems with reusable building blocks.

In this work, we present Composable Resilient Steps (CReSt), a new abstraction that separates com-
posable application logic from resilient distributed system implementation. In CReSt, components
operate in steps: a component consumes some (> 0) messages, updates its local state, and optionally
sends a series of messages as a result. Because almost any distributed system can be specified
with message-passing primitives [37], it is easy to translate existing systems into a sequence of
steps. CReSt effectively decouples application logic (specified as CReSt steps) from mechanisms
for resilience and composition (implementation of CReSt steps). For developers, CReSt steps are
all-or-nothing and uninterruptible by failures, similar to database transactions, making them a
powerful abstraction — as shown later, applications written with steps are resilient by construction
and seamlessly compose with other CReSt applications while preserving resilience. For infrastruc-
ture builders, CReSt is a narrow interface that allows for efficient, reusable implementations that
benefit many applications.

To demonstrate the effectiveness of CReSt, we build DARQ, a highly optimized CReSt imple-
mentation for the modern disaggregated cloud. DARQ is a storage service that encapsulates the
state of CReSt components and emulates a failure-free messasging layer between them; developers
attach ephemeral compute to DARQ to receive messages and perform CReSt steps. When using
DARQ, developers focus on application logic as steps, and DARQ transparently ensures atomicity
and durability of steps via (group) commit, and resilient composition via message retry and dedu-
plication. Individual services built with DARQ are therefore resilient, and resiliently compose with
other CReSt-compatible services through a narrow message-passing interface. Under the hood,
DARQ consists of a layer of CReSt logic on top of a performant log, making it lightweight to deploy

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:3

and scale. Correctness of DARQ is grounded in our formal modeling of CReSt components as I/O
automata [53] in a fail-restart environment where faulty components are quickly replaced with
previous snapshots of their state from reliable cloud storage. For performance, We introduce a
novel scheme of speculative step execution, where DARQ messages are processed before persistence.
Similar in spirit to early lock release [64], speculative execution allows for subsequent steps to occur
without waiting for persistence of previous ones, effectively parallelizing slow cloud persistence,
leading to dramatically reduced end-to-end latency. DARQ internally tracks step dependencies and
automatically restores the system to a consistent state upon failure, transparent to CReSt users.
Note that DARQ is merely one implementation of CReSt, and other implementation are possible.
For example, one can use distributed transactions [29, 45, 57] across senders, step processors, and
receivers to orchestrate atomic steps, or adopt widely-used cloud programming patterns such as
transactional outboxes [6] and Sagas [5]. In contrast, DARQ is specifically engineered to work
with storage-compute separation in the modern cloud and compose decoupled services, free of any
requirement of cross-service atomicity such as traditional distributed transactions with two-phase
commit. In exchange, DARQ incurs additional persistence round-trips (mitigated by speculative
execution) in favor of distributed coordination across service boundaries. To show that CReSt can
express diverse cloud applications, and that DARQ offers competitive performance to alternatives,
we build an example streaming application and workflow application using DARQ. Our evaluation
of these systems shows that DARQ can help build resilient cloud applications, often outperforming
handcrafted solutions in terms of throughput and latency, while being simpler and more reusable.
To summarize, we make the following contributions:

e (Sec. 2) We propose CReSt, a general abstraction for resilient cloud applications based on
composable fault-tolerant steps.

o (Sec.3) We design and build DARQ, an efficient CReSt implementation as a service for the
modern cloud, based on group commit and reliable message delivery.

o (Sec.4) We propose a novel speculative step execution scheme with DARQ to bypass slow
cloud storage and reduce end-to-end latency in composed cloud applications.

e (Sec.6) We prototype and evaluate a stream-processing system and a cloud workflow system
using DARQ, showcasing that DARQ-based applications are performant, general, and easy to
build compared to the current state-of-the-art.

Finally, we cover related work in Sec. 7 and conclude in Sec. 8.

2 COMPOSABLE RESILIENT STEPS

We now introduce the Composable Resilient Steps (CReSt) model in detail. With CReSt, devel-
opers design applications based on a simple mental model of stateful participants and message
channels, as shown in Figure 1. Participants perform atomic, all-or-nothing steps that receive
some (> 0) messages, process messages and update their local state, and finally send some (>
0) messages. In more concrete terms, each CReSt participant is a state machine with some lo-
cal state (accessible as participant.State). CReSt programs invoke participant.Receive()
to acquire messages intended for the participant, and evolve the system exclusively through
participant.Step(consumed, newState, outgoing), where consumed is the list of messages
consumed, newState is the updated component state, and outgoing is the resulting list of mes-
sages to send to other participants. Once a step completes, its effects become fault-tolerant — the
messages it consumes will not be delivered or consumed again, any local participant state becomes
recoverable, and any outgoing messages will be delivered asynchronously and exactly-once to
other CReSt participants. This implicit resilience dramatically simplifies the application logic, as it

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:4 Tianyu Li et al.

hides complex low-level mechanisms (e.g., checkpointing, recovery, retries, and deduplication) for
developers to focus on the high-level application logic.

Steps often have application-level meanings, corresponding to processing of a request, completion
of task, etc. For example, a simple RPC service that handles client requests to atomically compare-
and-swap (CAS) a named value can be thought of as performing steps that consume the client
request message, atomically execute the operation, and reply with the result. In this case, each
CAS participant has local state that is a dictionary of named values; the service logic consists
of a (sequential) processing loop that calls participant.Receive(), deserializes client requests,
performs the compare-and-swap operation, and invokes participant.Step() to persist the effects
and expose responses. If clients and the CAS server both participate in CReSt, the resulting end-to-
end application is also resilient, because failures cannot interrupt steps, only delay execution until
retry.

2.1 Example Applications with CReSt

Before formally introducing the CReSt model, we highlight the generality of CReSt using several
real-world applications that can be easily specified using CReSt steps.

Cloud Workflows: Cloud workflows are programs that chain together multiple services in a
distributed environment. Systems such as Temporal [21], Azure Durable Functions [15], or Amazon
Step Functions [1] implement workflows in various ways as an important cloud programming
abstraction. In CReSt, one can think of workflows as a coordinator state machine (which may be
virtual) sending a series of messages to component services, and keeping workflow state locally (i.e.,
the coordinator performs Step(prevResponses, programState, nextRequest), and services
perform Step(request, state, response)). Workflows specified with CReSt are resilient when
executed on an environment that correctly implements CReSt achieving the same guarantee as
systems such as Azure Durable Functions. Such modeling is also similar in spirit to the serverless
message-passing model used by Netherite [30] and other similar work [65, 72], to implement resilient
workflows.

Stream Processing: Streaming systems consist of various stream processors performing com-
putation on an underlying stream of data organized into partitions and topics. In CReSt, a stream
processor can be modeled as continuously performing steps to consume batches of messages from
upstream, processing them locally, and sending results downstream. For example, a stateless filter
processor may receive message m and emit Step([m], null, [m]) if the predicate evaluates
to true on m, or emit Step([m], null, []) if false, marking m as consumed without sending it
downstream. A stateful operator may not immediately output a message, but may continuously
take steps to update its local state (e.g., a count operator receiving message m may emit Step([m],
count + 1, []), and only emit Step([], count, [asMessage(count)]) periodically). Several
steps may also be coalesced into a single step for batched I/O. Stream processing specified with
CReSt steps is resilient by default, providing “exactly-once” semantics [62, 68], in the sense that
each data item in the input data stream is reflected exactly-once in the result. Application developers
do not need to implement retransmissions, checkpointing, or other fault tolerance mechanisms,
which are handled by CReSt implementations.

Distributed Commit Protocol: Traditional distributed databases implement ACID transac-
tions using the 2-phase commit protocol, which is tightly integrated with the write-ahead log for
fault-tolerance [57]. This protocol can be re-specified in CReSt as a sequence of steps — using a
successful 2-phase commit sequence as an example, the transaction coordinator first uses a step to
note down the start of commit of ¢ and sends prepare messages to workers (i.e., Step(request,
coordinatorState, PREPAREs)), and workers take steps to check if the commit is allowed and
respond with the result (i.e., Step(PREPARE, workerState, OK)). When all workers respond,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:5

80 EEE] AN
BF === u
LA LI
Participant1 S Participant2 S22 Participant3
@ LAA
8@@ ek =22

Fig. 1. An example of a CReSt system with 3 participants. Each participant is a state machine
performing steps that atomically update the state and send/receive messages to/from channels.

the coordinator steps all OK messages, locally marks the transaction as committed, and sends
commit requests (i.e., Step(OKs, coordinatorState, COMMITs)), followed by workers resiliently
applying the commit (i.e., Step(COMMIT, participantState, ACK)). Note here that the protocol
designer does not need to reason about component failures or message loss, as CReSt transparently
guarantees resilience.

2.2 Fail-Restart Model

Given a CReSt application, with each component and the steps it performs, our goal is to deploy it
to the failure-prone cloud while preserving application semantics. Intuitively, our goal is behavioral
indistuinguishability — users should not be able to differentiate between executions of the CReSt
application in a failure-free environment and one that automatically recovers from failures. This is
difficult; consider again the CAS service — the service may fail without sending the reply, or the
CAS service may send the result, but crash and lose the updated state. To make matters worse,
resilient steps in our example involve more than just the CAS service; a service that is resilient by
itself may still fail to guarantee resilient steps, as clients may crash and lose replies.

We address this in two steps. First, we introduce the fail-restart model (Section 2.2). Unlike
the fault-oblivious CReSt model, it closely models cloud deployment environment by subjecting
all components to possible failure, but allowing them to (quickly) restart and recover their state
from durable storage. Next, we present a transformation (Section 2.3) that automatically converts a
CReSt application to be fail-restart, and show that this transformation is faithful to the original
semantics.

2.2.1 Modeling Cloud Failures. As is standard in distributed systems modeling, we model par-
ticipants and channels using I/O automata [53]. Each participant is an automaton that performs
atomic stateful actions to its local state, and interacts with other automata using asynchronous
messages. A step is formally a segment of original automaton execution that starts with some (> 0)
RECEIVE actions, followed by arbitrary local updates, and then some (> 0) SEND actions. Obviously,
we can decompose any execution trace into a series of steps. As mentioned, we define failures
in CReSt as fail-restart. More formally, a fail-restart automaton has two copies of its state — one
volatile (e.g., in-memory) and one persistent (e.g., checkpointed on S3). A fail-restart automaton
normally operates based on its volatile state, but can perform a CommIT action to copy its volatile
state to persistent storage or vice-versa with a RESTORE action. Fail-restart automata also react
to special RESTART inputs by erasing their local in-memory state; this corresponds to automated
management tools such as Kubernetes detecting and repairing a failed node. Note that message
channels are unaffected by restarts and will continue to deliver any in-flight, unreceived messages
in order. In practice, the “restarted” machine is likely an entirely different one launched to replace
an unresponsive machine and may even co-exist with the original machine temporarily [8]. We
assume that infrastructure providers can effectively mask this with mechanisms such as leases [40]
or distributed consensus [48, 59].) This external signal can arrive arbitrarily and unconditionally,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:6 Tianyu Li et al.

corresponding to the arbitrary nature of failures. Our goal, then, is to translate the naively specified
CReSt application (corresponding to normal I/O automata with no failures) to fail-restart automata.

2.2.2 A non-solution. At first glance, we may achieve resilience by executing steps inside the
fail-restart automata and inserting ComMIT after each step. However, this naive transformation
does not achieve resiliency. Performance implications aside, the key challenge here is atomicity.
Consider for example an execution where a participant receives a RESTART right after a RECEIVE,
before it has done CommiT. Then the recovered state corresponds to a point before the RECEIVE,
but the message may have already been removed from the queue and appear lost. Clearly, it is not
enough to just checkpoint and restore components individually: to recover to a consistent state, we
need a more carefully designed protocol, which we will now present.

2.3 Implementing CReSt: A First Cut

We now sketch a basic fault-tolerant CReSt implementation by presenting a transformation from
a failure-oblivious CReSt application to fail-restart automata. We intend for this implementation
sketch to provide intuition for correctness. This scheme also serves as a starting point for DARQ,
our optimized CReSt implementation, which we discuss in detail in Section 3.

As sketched in Figure 2, the transformation wraps the CReSt application and adds two persistent
message queues — an in-queue and an out-queue of messages'. At a high level, our goal is to
use these two queues and automatic invocations of CoMMIT to simulate a failure-free execution
environment for the fault-oblivious CReSt application in a fail-restart setting. To achieve this,
the transformed automaton continuously pulls messages from the network into the in-queue;
messages from different channels are not ordered with each other and may appear in arbitrary
order on the in-queue. These messages are then supplied to the CReSt application as results to
participant.Receive(). When the CReSt application invokes Step, consumed messages are
removed from the in-queue, and the outgoing messages are added to the out-queue. Note that
message consumption need not be in strict FIFO order — suppose participant.Receive() yields
messages m; and my, the participant may consume them in arbitrary order, or simultaneously as an
atomic unit, by explicitly supplying either m;, m,, or {my, m,} as the consumed argument to Step.
The transformed automaton periodically performs a CommiT that persists both the queues and the
state of the original automaton without interleaving CommrIT with any Step, which ensures that
no partial step is committed.

On RESTART, however, even if the recovered transformed automaton state contains no partial
steps, there may be partial leftover effects on the network. Specifically, a RESTART may occur after
message receipt but before messages are persistent on input message queues, or after sending
but before the output message queue can mark it as sent. We borrow from the classical TCP
algorithm [60] by retrying and deduplicating messages. The transformed automaton continuously
retries out-queue messages until acknowledged, which happens after the destination automaton
persists the received message. Acknowledge messages are then pruned from the system. To avoid
processing the same message more than once due to retries, in-queues deduplicate incoming
messages using sequence numbers. Each outgoing message includes a unique identifier that consists
of a participant id and a sequence number assigned as they enter the out-queue. Each in-queue
maintains a deduplication table that maps each participant id to the largest seen sequence number
from that participant, neglecting messages with lower sequence numbers. This deduplication state
is persisted during CommiT along with the rest of the automaton state; we similarly enforce that

1“Queues” are really misnomers, as they are interleavings of multiple underlying message channels, and therefore only

partially ordered. Additionally, as we explain later, messages on the queue can be buffered and then consumed out-of-order.
We have decided to refer to them as queues in accordance with tradition [29].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:7

Transformed Automaton

Deduplicate Original Automaton

Incoming (Participant)
B In-Queue

Out-Queue

Retry until
acked

Ack after

Persi
ersistence Restore1 ‘Commit

Persistent Storage

Fig. 2. CReSt Transformation & First-Cut Implementation — The original automaton performs
pure CReSt steps. Our translated automaton uses locally stored messaging queues, checkpoints,
and retry-based deduplication to achieve fault-tolerance guarantees.

CommIT does not occur between receiving a message and updating the deduplication state, so they
appear atomic upon recovery.

Combined, the two message queues effectively emulate a reliable, fault-tolerant, exactly-once
messaging layer for the CReSt application in a fail-restart environment. This ensures that the
transformed automaton faithfully executes steps from the original CReSt participant despite failures.
Note that our construction also guarantees resilience for non-deterministic participants, because the
message queues “determinize” a step by capturing its effects persistently before exposing them [37].
If a non-deterministic step experiences failure, either its effects are recovered and the step is not
re-executed, or none of its effects are recovered or exposed and re-execution is not distinguishable
from first invocation.

3 DARQ

The previous section described how a CReSt application can be faithfully translated into fail-restart
automata with persistent message queues, retries, and deduplication. Implementing this efficiently
in the cloud, however, presents major challenges. Most significantly, infrastructure builders must

contend with:
o Stateless Compute: Modern cloud architectures emphasize flexibility and on-demand scale-out.

Most often this involves separating compute and storage and using autoscaling stateless compute
services such as serverless FaaS [44]. The fail-restart model must be adjusted to this setting.

o Incremental State: Our earlier construction saves the entire state of a participant and all queued
messages in each CommrT. This performs very poorly when queues are deep or participant state
is large.

e Blackbox Services: Almost all modern cloud systems rely on cloud provider services such as
Amazon S3 or Azure CosmosDB. Such services typically expose an RPC-based API, and cannot
be easily modified by users. For CReSt systems to be correct, developers must extend CReSt
semantics to existing services.

e Latency: As specified, CReSt requires frequent and synchronous persistence of participant state
for fault-tolerance, leading to high latency in processing. To make matters worse, in complex
applications where processing requires many message-passing rounds, the latency overhead is
accumulative and can quickly become unacceptably high.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:8 Tianyu Li et al.

To overcome these challenges, we introduce DARQ (Deduplicated, Asynchronously Recoverable
Queue), an efficient implementation of CReSt that addresses each of the challenges above.

3.1 Processors and Self-Messages

We first give a high-level overview of the DARQ APIs and guarantees, with a running example of
the CAS microservice from before. As shown in Figure 3, at the core of DARQ is a storage service
that encapsulates the state of one CReSt participant plus the persistent message queues introduced
before. External clients or other participants communicate with the encapsulated participant by
sending messages through the DARQ producer API For example, an external client may submit a
request to invoke CAS(x, 42, 0) by adding it as a message to the relevant DARQ, as shown on the
left in Figure 3. To evolve participant state, developers attach ephemeral compute nodes, called
processors, to DARQs. Each processor is loaded with the “business logic” of the CReSt participant
that performs fault-oblivious steps, and DARQ pushes any messages received to it for application
handling. Processors store participant state locally in volatile memory for direct access, but must
persist such state and expose effects of processing through the DARQ step API. As CReSt specifies, a
DARQ step request includes identifiers for the messages consumed, updated state, and any outgoing
messages (e.g., the example CAS service step in Figure 3 consumes the request, update value of x to
42, and send result to client with success).

DARQ encodes participant state through self-messages — processors send their future (amnesic)
selves enough information to restore state. In the simplest case, as a part of each step, the attached
processor copies the entire updated state as a message (or a succinct reference to externally persisted
state). The message is then consumed in the next step, which generates a new self-message with
updated state. For large or incremental state, self-messages can be used much like a write-ahead log
— each step generates a delta record of the state and does not consume the previous self-messages.
Then, at recovery time, all the unconsumed self-messages will be replayed to the processor in step
order. For example, the step shown in Figure 3 can be encoded as a delta record setting x to 42;
upon recovery, these deltas are applied to reconstruct the full state. For efficiency of replay, users
may periodically perform steps to consume previous self-messages and emit a new self-message
that coalesces previous deltas, similar to checkpointing in traditional DBMSs [56] (more on this in
Section 3.2).

To summarize, DARQ is a concrete implementation of the CReSt construction presented earlier,
structured as a cloud service working with ephemeral compute nodes called processors. Users
write applications in a fault-oblivious manner and DARQ transparently ensures fault-tolerance
by automatically enforcing CReSt semantics, persisting state, and recovering from failures. We
have designed DARQ to expose an API similar to streaming/messaging services such as Kafka [7]
or EventHubs [25], but with support for encoding state through self-messages. Note here that
despite the superficial similarities, DARQ fundamentally subscribes to the CReSt model rather than
streaming or simple message-passing.

3.2 DARQ Implementation

We now cover our implementation of DARQ in detail:

Storage Backend. Recall that each DARQ instance logically stores three pieces of state (in/out
message queues and participant local state) that must be updated atomically, as shown in Figure 4.
As shown in Figure 4, DARQ multiplexes them all onto an underlying physical log of messages
(recall that state is encoded as self-messages), distinguished from each other with a message type
field (shown as different colors in Figure 4). Each message is uniquely identified using a log sequence
number (LSN). Steps are atomic in DARQ as they are simply log appends: consumption of previous
messages is represented with a special completion message with consumed LSNs, and appended

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:9

DARQ internally
persists and route
messages

® Deliver r i

Producer, Step
API API

Client @ ~ " Ephemeral
ien Er}qlﬂeue(m) where"m (" Ephemeral ® Execute CAS(x, 42, 0)
is "CAS(x, 42, 0) Compute in-memory, yields a

SUCCESS response, r,
@ Step(m, s, r), which %
-

and self message s,
consumes m, updates|) where s is "x = 42"
state with s, and
sends r

(@ Push m to compute

Fig. 3. DARQ Overview - Developers attach ephemeral compute to each DARQ instance and
DARQ delivers messages by pushing to the compute; the compute node then interact with the rest
of the system via steps in DARQ. State is maintained as volatile data structures in the compute
node, and persisted as self-messages.

along with out-messages, similar to database commit records. Figure 4 shows one such step. Here,
the DARQ service exists in a separate failure domain as the compute node. DARQ streams in-
messages to the attached processor in LSN order, and the processor performs a step locally based
on the in-message at 102 and the latest state at 101. After local processing, the compute node
has evolved its participant state and computed a series of out-messages. These messages are then
appended back to DARQ atomically with a completion record marking 101 and 102 as consumed.
For our implementation, we use FasterLog [19], a popular open-source high-performance log. The
DARQ log is flushed to reliable cloud storage for fault-tolerance by default, but may also rely on
standard replication techniques instead [48, 59].

Failure Recovery. When a processor restarts, it loses all local volatile state and must reconstruct
its state using self messages in DARQ. DARQ enters replay mode when a processor disconnects and
scans the log sequentially in 2 passes: first, to identify completion records and remove consumed
message from replay, and second, to replay unconsumed message to the recovered processor.
Additionally, DARQ reorders self-messages ahead of any in-messages during replay, because self-
messages during normal stepping are always appended to the end of the log, potentially behind
unconsumed in-messages. Note that because DARQ normally does not need to stream self-messages
to processors (as they are merely for recovery purposes), processors can tell that they are in replay
upon entering a self-message, and that replay is finished upon encountering the first in-message.
In real deployments, DARQ must additionally guard against imperfect failure detection, which
may lead to two processors both attaching themselves to DARQ, not necessarily aware of each
other’s existence. For this, we introduce incarnation numbers for processors. Each processor, when
first attached to DARQ), is assigned a unique, monotonically increasing number stored as part of
the DARQ instance state. DARQ will only accept requests tagged with the currently recognized
incarnation number, notifying processors with smaller incarnation numbers so they can gracefully
terminate. Obviously, the value of the largest recognized incarnation number must be persistent
for correctness, and DARQ uses FasterLog’s internal epoch framework [51] to persist the value as
metadata along with each log flush and ensure that the persisted number is consistent with the log
content.

Enforcing Invariants. The DARQ service enforces invariants around steps to guard against
programming errors or other anomalies and preserve CReSt stepping semantics. Every message is
allowed to be consumed at-most-once; steps that attempt to consume any message already stepped

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:10 Tianyu Li et al.

Persistent Persistent Participant
In-Queue Out-Queue Local State

EE=) D
102 103 @ % 107

101 104 106
el [= =[]
State encoded as
self-messages & @ Complete 101, 102
Processor

Fig. 4. DARQ Implementation — Underneath the hood, DARQ multiplexes data structures speci-
fied in the CReSt model onto a single log for storage efficiency and atomicity.

are rejected in its entirety, similar to an aborted transaction. DARQ enforces that any steppable (i.e.,
in or self) message is stepped at most once. To achieve this, DARQ maintains an in-memory hash
table of steppable messages; when messages are added either through the producer API or as part
of a step, their LSNs are added to the table. We adopt an OCC-like [46] protocol to serially validate
steps by checking that all the consumed LSNs are in the steppable message table, and remove them.
Steps that fail this validation process are rejected entirely. We reconstruct the steppable message
table upon DARQ failure by scanning the log. Additionally, as presented in Section 2.3, DARQ
needs to deduplicate incoming messages. The producer API takes extra deduplication information
consisting of a globally unique producer ID and a sequence number (i.e., the aforementioned
TCP-inspired deduplication scheme). When sending from a DARQ, DARQ automatically populates
deduplication information. Otherwise, developers may supply application-specific values or omit
them to bypass deduplication. DARQ maintains a deduplication table mapping from producer ID to
the largest seen sequence number that is similarly persisted and kept in-sync with log with [51].
Background Maintenance. In the background, DARQ delivers output messages to their in-
tended recipients, automatically retrying until the recipient acknowledges, as Section 2.3 prescribes.
In addition, DARQ also needs to perform tasks such as garbage collection or checkpoints to prevent
unbounded growth of self-messages. We perform these tasks by running a special process that
scans the log, co-located with DARQ servers. Together with the table of unstepped messages, we
can compute a prefix of the log that has been completed — a message is completed if it has been
consumed by a step as an in/self-message, or if it has been acknowledged by the recipient as an
out-message. DARQ periodically truncates the largest completed prefix for garbage collection.
Checkpoints. Lastly, long-running participants may see self-messages growing unboundedly in
DARQ, preventing garbage collection and slowing down recovery. DARQ supports DBMS-style
checkpointing [56] to truncate self-messages and prevent unrestricted growth. As stated before,
logically, a checkpoint is a special internal step that marks all previous self-messages complete, and
produces a single self-message that encapsulates the current state of the participant. Concretely

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:11

in implementation, the completion record for a checkpoint has a special record type to implicitly
complete self-messages to some log offset, and users supply a custom function to snapshot the
current participant state.

3.3 Integrating with Blackbox Services

As noted previously, components using DARQ to compose with each other enjoy fault-tolerance and
appear to process messages exactly-once. However, it is inevitable that DARQ systems need to com-
municate with external, non-DARQ cloud services. Unfortunately, this usually means that DARQ
regresses to at-least-once guarantees because DARQ fundamentally relies on retries to achieve
exactly-once processing, and external services are generally oblivious to DARQ’s deduplication
schemes.

To address this, DARQ (and by extension, general CReSt) systems must compose with existing
cloud services through CReSt-compatible wrappers. The general idea is for external services to
behave like CReSt components by implementing deduplication and atomic steps without DARQ.
To illustrate, we sketch a way for services to achieve this using the example of an ACID DBMS.
Consider the well-known transactional outbox pattern [6], where the database must atomically
update application state and send events/messages. The standard solution calls for a separate
“outbox” co-located within the database; any request atomically writes the result to the outbox
with any storage effects, most likely with a transaction. A separate, stateless message broker
component then polls and sends these messages. To deduplicate incoming requests, developers
can either rely on request idempotency, or implement our DARQ deduplication scheme with a
table and transactionally update it with the request. Other services may similarly be modified
to be CReSt-compatible and therefore resiliently compose with DARQ. Note that such solutions
generally introduce overhead in performance, and complexity, but applications may already do so
in practice (e.g., many applications already rely on transactional outboxes). Alternatively, services
may be engineered to causally log their state and use an approach similar to [62] to deduplicate
correctly after failure. We leave a more detailed study of integration strategies for future work.

Users can implement such composition in DARQ using a special type of message called activity.
Semantically, an activity is a self-message that encapsulates a piece of work to be done on some
external service. The processor is then free to execute some custom logic, most likely an RPC to
the external service in question, using the LSN of the self-message as a unique deduplication token.
Then, when the external service completes the request, the activity message can be marked as
complete and later removed from the system. Activities that execute on CReSt compliant services
guarantee resilience. For other services, DARQ regresses to the typical at-least-once guarantee
common in the cloud today by retrying activities. Note that most read-only requests can bypass
this mechanism, as they can be transparently retried if failed. Overall, activity support in DARQ is
similar to existing cloud workflow systems such as Durable Functions or Temporal, and is largely
captured by CReSt, using participant state to track individual activity progress.

4 SPECULATIVE EXECUTION

Even though DARQ correctly implements CReSt, the problem of performance remains — in the
previously presented scheme, each time a message flows through DARQ, it must be persisted,
which incurs a substantial latency overhead (up to 10ms if using cloud storage). Worse still, such
overhead is cumulative: the more messages sent, and the more disaggregated an application is,
the bigger the overhead. We propose a solution using distributed speculative execution, in which
messages are transmitted and processed before persistence. Obviously, when DARQ fails, some
processed messages or state may no longer be available, and current progress must be rolled back

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:12 Tianyu Li et al.

and replayed from earlier sources [37]. In this section, we briefly introduce how we implement
speculative execution and discuss the trade-offs of our solution.

4.1 Special-Case: Intra-Participant Speculation

Recall that in our earlier formulation, DARQ is a separate entity from the processor that attaches
to it and provides compute capabilities. Consequently, one might assume that DARQ must persist
messages before exposing them to the attached processor, as the processor may survive DARQ
failure and continue operating on lost state. That said, processors interact with the rest of the
DARQ system exclusively through message-passing that DARQ intermediates. Because DARQ
is a log underneath the hood, any result of a step must be ordered behind the input to the step
(i.e., consumed messages), and only recovered if the input is recovered because the log guarantees
prefix recovery by definition. As a result, if DARQ sends messages to the attached processor before
persistence and fails, processing of lost messages is transparent to other participants as the effects
will have been lost as well. The processor, however, will have local state corresponding to rolled
back steps and must recover to a point that corresponds to the recovered DARQ state, which can be
achieved simply by erasing the processor state and treating the case as one of processor failure. To
summarize, intra-participant speculation allows DARQ to safely expose uncommitted messages to
attached processors without special handling while maintaining, on condition that DARQ recovery
prompts a processor restart. Because we assume that processors fail more often than DARQ, we
believe this cost to be acceptable for most deployments and therefore enable intra-participant
speculation by default.

4.2 General Speculation

With general speculation, DARQ nodes send and consume messages to/from each other before
they are persistent. Doing so removes persistence from the execution critical path, and can result
in significant speed-ups for deep message-passing chain and/or slow storage, both of which are
common in modern cloud environments [44]. However, general speculation leads to increased
complexity in failure recovery — compared to the special case from before, a DARQ failure may
result in losing some speculative steps but retaining (partial) effects of them in other surviving
DARQ nodes. To make matters worse, these leftover effects might have been persisted or even
exposed to external observers.

To solve this problem, we design and implement a rollback-based recovery scheme based on a
modified version of the Distributed Prefix Recovery algorithm [50]. On a high-level, a consistent
message-passing system state requires that if a participant’s state reflects receiving a message,
then the state of the sender reflects sending that message [33]. This produces a natural notion of
dependency across speculative CReSt steps — a step s depends on step ¢ if s speculatively consumed
a message m that was produced by t. Our solution explicitly tracks such dependency by appending
tracking information to each message. Each DARQ instance then locally accumulates dependency
information; a distinguished coordinator node periodically joins information across DARQ nodes
to obtain a global dependency graph. Upon failure, some speculatively executed steps are lost, and
to restore the system to a consistent state, one must explicitly roll back any steps that depend
on lost steps. In our solution, the coordinator node is responsible for detecting failures (through
heartbeats, etc.), computing the rollback set from the dependency graph, and orchestrating such
a rollback with all affected DARQ nodes. Importantly, if a step, and all of its dependencies are
persistent, it will never be rolled back, and is therefore considered stable. The dependency graph
also allows the coordinator to compute the set of stable steps, and external observers may choose
to only observe effects from stable steps if they do not wish to be exposed to the complexity of
rollbacks. For such observers, the speed-up of speculation stems from parallelism of persistence —

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:13

a speculatively executed message may be persisted in parallel with its dependencies, instead of
waiting on them first.

To summarize, general speculation significantly reduces the persistence overhead of DARQ; in
return, doing sorequires additional resources for orchestrating dependency tracking and failure
recovery; effects of failures are amplified by general speculative execution, as the loss of a DARQ
node may cause all of its dependents to also restart. That said, as we show in Section 6, general
speculation tends to lead to significant speed-ups in scenarios where failures are infrequent.
The key challenges in our implementation involve low-overhead dependency tracking, efficient
computation of stable and rollback sets, coordinator selection and maintenance, and various
concurrency conditions in distributed, asynchronous systems. The details of our solution is beyond
the scope of this paper, and we leave this discussion for future work.

5 APPLICATIONS AND EXPERIENCE

In this section, we demonstrate the utility of DARQ by sketching how we build various resilient
cloud applications using DARQ, and provide a brief experience report.

5.1 Case Study: Stream Processing

As mentioned in Section 2, each stream operator (e.g., map, aggregate) can be thought of as a
processor performing CReSt steps, receiving data items as message from upstream and sending
results downstream. We now sketch the implementation of several representative types of stream
operators in DARQ with a focus on practical performance considerations.

Stateless Operators: Stateless operators such as maps and filters are typically early in a stream
processing pipeline and must support high ingestion rate. A naive implementation using DARQ
would perform a step for every input message, which fills the DARQ log with completion records
and limits throughput under high input rate. An efficient implementation can offset this with
batching, waiting until several messages have been processed to submit a step that consumes them
as a unit, generating only one completion record in addition to outgoing messages [32]. As expected,
there are trade-offs developers should consider: larger batch sizes lead to higher throughput but
increases processing delay as processing of previous messages is not exposed until later messages
arrive.

Stateful Windows: Window functions group stream events based on (typically) time and output
some aggregate for each window. Given a windowing scheme, a DARQ processor maintains a list
of currently open windows, and continuously incorporates events into the partial aggregate for
each window. Assume for the sake of illustration that we are implementing a tumbling window
with a short window length t and some small slack (<< t) to account for out-of-order events. Then,
the local state of a DARQ processor consists of at most two currently open windows, their starting
and ending timestamp, and the (partial) aggregate. In our implementation, DARQ performs a step
only when a window closes, at which point DARQ consumes all processed messages, persists local
state, and emits the aggregate. This is similar to batching in stateless operators, except that window
lengths serve as natural batch boundaries. Larger window sizes may warrant intermediate steps
that consume previous messages but yield only a self-message to reduce replay time on recovery.

Aggregates: Lastly, consider stream operators that continuously accumulate local state from an
input stream (without necessarily outputting a stream, similar to tables in KafkaStreams [9]), often
with larger local state than window operators. For example, one such operator may group input
events by some key and count the occurence of each. As described in Section 3, processors can
persist large state by using DARQ as a write-ahead log, sending self-messages of incremental state
deltas. Similar to before, our aggregate operator implementation performs batched steps, either
based on the number of events or time elapsed. A batched step consumes all processed messages

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:14 Tianyu Li et al.

and yields a small delta record as self-message. On failure and recovery, DARQ streams such
self-messages to the processor so it can replay and restore its state. Users use the checkpointing
mechanism outlined in Section 3 to periodically compact delta records and reduce replay time on
recovery.

Example Application and Discussion. Consider a search trend alert system in the cloud -
each data item in the input stream models a search request, including the string search term, a user
id, the user’s IP address, and the timestamp at which the search was issued. We are provided with a
list of terms of interest, and want to monitor and receive alerts if certain terms see an unexpected
surge in search frequency (e.g., a surge in searches for fever remedy in a region may be of interest
to relevant public health officials). In stream processing terms, this task can be split into three

processors: .)
® Preprocessing. This processor filters the input data based on search terms, and maps each term to

a coarse-grained region code using the IP information.

o Windowed Aggregate. This processor counts the number of each relevant search term for each
region using a tumbling window based on event time.

o Anomaly Detection. This processor maintains local state about past window outputs and runs an
anomaly detection function to decide if an event should be emitted.

We implement this application in both DARQ as described earlier and KafkaStreams [23, 68], which
is widely used in the industry and offers exactly-once stream processing on top of the equally
popular Kafka system [7]. In our experience, both implementations took around 10 developer-hours
and a few hours of performance tuning and debugging. Note here that DARQ is more directly
comparable to Kafka as the underlying storage and messaging system, rather than KafkaStreams,
which is a user library. The core DARQ stream processing implementation consisted of 280 lines of
C# code, whereas the KafkaStreams implementation consisted of 172 lines of Java code. Although
the two projects are not directly comparable (due to differences in languages and libraries), this
serves to show that building streaming application with DARQ is similarly straightforward as
with a specialized library. Compared to Kafka however, DARQ-based stream processing is more
composable under the CReSt model. For example, DARQ-based resilient workflows may directly
invoke DARQ-based stream processing without loss of resilience, whereas workflow systems must
treat Kafka as an external system and apply additional failure-handling logic. Such composability
is possible because CReSt participants orchestrate resilience with each other through a minimal
message-passing interface rather than through more complex mechanisms such as multi-participant
transactions. In this sense, it is possible to make Kafka similarly composable by providing a CReSt
wrapper around it, but as we show in Section 6, Kafka’s support for its richer feature set has
performance overheads compared to a minimalistic implementation of CReSt such as DARQ.

5.2 Case Study: Resilient Cloud Workflow

Cloud workflows chain multiple service invocations together into a larger program resiliently.
Compared to stream processing, workflows are typically less demanding in raw throughput, but
put more emphasis on flexibility and generality of the programming model. In the remainder of
this subsection, we first show how to implement a simple workflow with DARQ from scratch; then,
we show how existing feature-rich workflow systems such as Azure Durable Functions [15] can be
modified to run on DARQ.

Simple Workflow. Consider a simple case where the workflow is encoded as a static task
graph of idempotent tasks (passing results as messages along the edges). Assuming each task of
the workflow executes on a CReSt participant (the host) implemented with DARQ, there are two
primitives that DARQ must support: a fork operation that spawns tasks after a previous task is
finished, and a join operation that starts a task after all previous tasks are finished. To fork a task in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:15

DARQ, the participant sends completion messages to the hosts of all subsequent tasks. To join tasks,
the host of the subsequent task is first loaded with dependency information (e.g., the task to start C
is dependent on the completion of previous tasks A and B). Upon receiving the completion message
from the fork primitive, the host internally updates the dependency set of assigned tasks, and starts
the task if all dependencies are completed. To ensure fault tolerance, each task corresponds to a
step — at the end of the task, the host performs a step that consumes completion message from
previous tasks and emits completion message to downstream tasks. The atomicity of this step
ensures that either all tasks are eventually started, or that none of them are started and the initial
task is replayed. For long running tasks, developers can optionally perform intermediate steps that
consumes completion messages from previous tasks and update internal host state to mark the
task as started (potentially along with any intermediate state so tasks do not restart from scratch
on recovery).

Azure Durable Functions. DF has a frontend that translates user code into workflows, imple-
ments higher-level abstractions such as critical sections, and schedules them dynamically with
load-balancing. The underlying resilient infrastructure is represented as a series of atomic com-
putation units under the serverless message-passing model [30, 31], which prescribes a series of
stateful instances each fetching, executing, and committing work items from instance-local queues.
Thus, DF can map directly to CReSt, with stateful instances as participants and work items as steps.

Note that, because instances are fine-grained, it is often advantageous to group them into coarser
partitions, and treat each partition as a CReSt participant. This is how the Netherite backend for
DF operates [30]. In contrast to DARQ, Netherite relies on external persistent event queues (e.g.,
Azure EventHubs), a persistent key-value store for participant state, and a local commit log. DARQ
replaces all of these infrastructures and allows for DF to directly work on top of DARQ through a
straightforward translation layer.

To validate that DARQ is suitable for DF workloads, we extract traces by instrumenting real DF
runs and build a DARQ application to execute these traces, bypassing the complex DF frontend.
These traces encapsulate each processing step DF took at each Netherite workers, including the
messages sent and received, their size, any local instance state update, and the amount of time user
code took to execute as part of the DF step, capturing all the dynamic scheduling and load-balancing
performed by the DF frontend. We use this prototype as part of our evaluation scheme in Section 6
to compare the efficiency of DARQ against Netherite, and leave a more thorough integration with
DF as future work.

6 EVALUATION

We study the performance of DARQ and DARQ-powered systems in comparison to existing
solutions under various configurations. We also evaluate the performance of DARQ using a series

of microbenchmarks. Specifically, we focus on answering the following research questions:
e Do DARQ-powered systems achieve resilience with comparable or improved performance com-

pared to hand-crafted solutions?

o Does speculative execution improve application latency?

o Is DARQ scalable and economical as a cloud building block?

e Can DARQ tolerate failures and deliver acceptable recovery performance under the fail-restart
model?

6.1 Workloads and Benchmark Setup

We implement DARQ as a C# service deployed on Azure, with C# producer/processor clients. As
mentioned, DARQ is built on top of the FasterLog [19] library, which works with a variety of
storage backends. We experiment both with disks attached to Azure virtual machines, and the more

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:16 Tianyu Li et al.

_ 400

$150

- 3003
N £

¥ 100 2003

g 8

S 50 1003

£

'_

o

Kafka-EO Kafka-AO DARQ DARQ-SpecuIativéO

Fig. 5. Streams Latency and Throughput

economical but slower Azure blob storage [22]. Processors can either run in the same process as
DARQ for performance, or be fully remote. To fully stress DARQ, We run most mirobenchmarks
on two high-end L48v3 [3] machines, each with (virtualized) 48-core 3rd Gen Intel Xeon Platinum
8370C (Ice Lake) 2.8GHz processors, 384 GiB of memory and 6 X 1.92TB directly-mapped local
NVMe storage. For larger benchmarks, we use a cluster of the cheaper DS14v2 [2] machines with
(virtualized) 16-core Intel Xeon Platinum 8272CL 2.60GHz processors and 112 GiB of memory.
All machines are colocated within the same proximity group [4] with accelerated networking
enabled [18].

To understand how DARQ performance translates to real application performance, we implement
the 2 prototype systems modeling stream processing and cloud workflow execution as described in
Section 5, and compare them against real-world solutions currently deployed. For all experiments,
we enable intra-participant speculation by default, and optionally enable general speculation when
specified.

6.2 End-to-end Benchmarks

For all benchmarks in this section, we use a cluster of DS14v2 machines in conjunction with Azure
cloud blobs.

Streams — End-to-end. We deploy the example stream processing application described earlier
to both Kafka streams and our DARQ-based implementation. We use pre-computed, randomly-
generated workloads to emit events at a configurable, fixed rate into the system for 30 seconds.
We use Confluent Cloud’s fully managed Kafka offering and deploy in the same Azure data center
as our test machines. In Figure 5, we report the throughput and latency of the stream processing
application as before, we ramp up our event issue rate until throughput no longer increases for
throughput experiments, and report latencies measured when the system is at about half that load.
The final consumer of stream processing results is co-located with the initial producer, sharing
the same system clock for accurate latency measurement. We tune Kafka streams performance
according to published best practices [10, 11], and report results from both exactly-once processing
mode (EO) and the default at-least-once mode (AO). Note that all topics in Kafka are single-partition
for a fair comparison with DARQ, which is supported by a single underlying log. Typical production
Kafka deployments would run with more than one partition, but the same optimization can be
applied to DARQ systems as well. For DARQ, we run with 5ms checkpoints to Azure blobs storage
backend. We can see in Figure 5 that DARQ is competitive with Kafka stream’s performance,
achieving higher throughput and lower latency in general, although this may be an artifact of
engineering overhead present in the more feature-complete Kafka system. Meanwhile, latency is an
order-of-magnitude lower when DARQ runs in speculative mode, which presents a clear advantage
over Kafka. Overall, we have shown that despite DARQ’s generality, DARQ can perform on the
same order-of-magnitude of performance as existing solutions in stream processing.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:17

100 10

4

|5 —
%]

s E

4

- 50 5 g

[oX

& g

> -

(<)

<

oo

No-Persistence DARQ-Spec-nowait DARQ-Spec

Fig. 6. Diamond-workflow Latency and Throughput

Throughput (M events/s)
© O KB B N
o U1 o U o
Throughput (M events/s)
O O B NN
o o nn oW

0 5 10 15 20 0O 10 20 30 40 50
Batch Size Batch Size
(a) Filter (b) Sum

Fig. 7. DARQ Stream Operator Throughput

Streams — Operators. To better understand the trade-offs in implementations of individual
DARQ stream operators, we study two simplified operators: a filter operator and a sum operator.
Recall from Section 5 that the key performance booster in DARQ stream operator implementation
is batch size. For the filter processor, a batched implementation submits one step to consume input
messages and output filtered messages for every n messages processed; similarly, for the sum
operator, a batched implementation persists its local counter as a self-message and consume input
messages for every n messages processed. To quantify this the speed-up, we pre-load 10M 8-byte
integer messages onto DARQ, and measure the time it takes for DARQ to process them, varying
n for each operator. We construct the workloads such that the filter operator has a selectivity of
around 10%. As shown in Figure 7, batching doubles the performance of filter and almost quadruples
the performance of sum. Such benefits are mostly attainable with small batches, leaving the impact
of batches on replay time and latency minimal. This is because the overhead of small batches comes
in the form of additional completion records, which takes up space in the log and detract from
the effective I/O bandwidth used for user data. As batch size increases, the ratio of user data to
completion records rapidly increases, leading to diminishing returns.

Resilient Workflows: Diamond. We first study the performance of DARQ on a simple workflow,
where one task starts two other tasks, and executes an other task when both are finished — we call
this the “diamond benchmark” due to the diamond shape of the task graph. Each task performs
trivial work, so that the workflow stresses the orchestration system rather than compute. We
schedule tasks such that each of the 4 tasks in a workflow execute on a different machine. We
implement a non-resilient baseline using sockets and an in-memory task queue as the baseline,
which represents the theoretical upper limit of performance in a failure-free setting. For DARQ, we
run two configurations — one where DARQ runs speculatively on Azure blob storage backend, and
another where DARQ returns without waiting for commit (i.e., latency for components speculatively

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:18 Tianyu Li et al.

executing without outputing to an external uswer). We fire 500000 workflows total and measure
throughput as well as end-to-end latency, shown in Figure 6. The results show that DARQ achieves
about 70% of the baseline throughput, which showcases that DARQ is a lightweight solution. DARQ
latency is unsurprisingly an order-of-magnitude higher than the theoretical-best baseline, but as
we can see from DARQ-nowait, most of the latency stems from the slow cloud storage. With global
speculative execution, DARQ-based workflows achieve comparable, sub-millisecond latency as the
baseline.

Resilient Workflows: Netherite. For more complex workloads, we turn to cloud resilient
workflows. For this benchmark, we use the previously described DARQ-based trace simulator to
execute traces collected from Microsoft’s Netherite workflow engine. In our simulator, we assign
one DARQ to each Netherite worker, and pre-load the steps that worker took in the trace in-memory
of the DARQ processor. Each time a processor encounters a message, it looks up the step that
consumed it in the trace and checks if it has received all the messages that the step consumed; if so,
the step is “executed” by sleeping for the the amount time user code took to execute in DF, and
then the output messages sent. We also simulate local state update by sending it to the processor
as a self-message. All messages are padded with arbitrary bytes up to the size specified by the trace.
We take representative traces from the example DF applications from [30], with a “hello world”
workflow that calls several tasks in sequence(hello), and a banking workflow that implements
reliable transfer of currency between accounts using critical sections (bank).

Note here that the production version of Netherite uses Azure EventHubs as the underlying
messaging fabric, which is expensive. For a fair comparison, we modify Netherite to use simple
http connections as the messaging fabric. We report our results in Figure 8 against the timings of
the executed DF traces. In these graphs, we plot the number of completed steps over time, and plot
a vertical dashed line when an engine is finished. For the hello benchmark, Netherite-http slightly
outperforms DARQ, as the benchmark features no cross-partition communication, and Netherite
implements lightweight single-node speculative execution. For the bank workload, which features
cross-node dependency and deep invocation pipelines, DARQ significantly outperforms Netherite.
In general, speculative execution does not help with throughput. We plot the latency of end-to-end
workflows in the hello and bank benchmarks in Figure 9. We can see that DARQ, particularly with
speculation, significantly reduces workflow latency of the bank scenario, which features cross-
worker communication. For the simpler hello benchmark that runs the entire workflow on a single
node in steps, Netherite’s optimization around single-worker speculative execution greatly reduces
its latency, outperforming non-speculative DARQ. However, with speculation turned on, DARQ
is competitive with the optimized Netherite implementation. We have also run this experiment
on other workloads from [30] and observe that DARQ either outperforms or is competitive with
Netherite, but do not plot them here due to limited space.

To summarize, DARQ-based workflow systems have some overhead when compared to a dedi-
cated engine like Netherite in optimized cases (e.g., hello), but offer competitive or even superior
performance in cases where fault-tolerance cross-machine coordination dominates execution cost.

6.3 DARAQ Service Metrics

We now present a suite of benchmarks on the DARQ service itself to understand its performance,
and the cost of its CReSt guarantees. All messages are randomly generated 1 KB byte arrays.
Producer Performance. We first study the performance of DARQ producers, which limits how
fast DARQ can ingest work and deliver messages internally to each other. We issue 1 million enqueue
requests from a single client machine that is allowed to have w requests outstanding at a given
time. For throughput, we report results after incrementing w until throughput does not improve.
We report our measurement results on two L48v3 machines in Table 1. As shown, DARQ can

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:19

—— Netherite-EH Netherite-HTTP —— DARQ —— DARQ-Spec
600 — 120
a a
§400 o 80
) -
wn wn
200 # 40
Y N~
0 0
0 10 20 30 8 12
Time (s) Time (s)
(a) hello (b) bank
Fig. 8. CReSt Trace Throughput
I Average P99
R 90
“ 2000 w
S
- §,60
9 g
§ 1000 § 30
3 3
0 By r—— 0
Neth. Neth. DARQ DARQ Neth. Neth. DARQ DARQ
EH HTTP Spec EH HTTP Spec
(a) bank (b) hello

Fig. 9. CReSt Trace Latency

ingest around 650k operations per second, or 650 MB/s in throughput on a fast SSD. In comparison,
FasterLog, the underlying log storage engine of DARQ, can achieve raw throughput of 1.59M op/s.
The DARQ overhead is primarily from remote request processing and additional processing to
deduplicate and validate incoming messages, and from maintaining data structures used to ensure
DARQ stepping semantics. We also measure the throughput of DARQ with deduplication and
validation turned off, which yields around 10% speedup on local SSD. To study the impact of storage
performance on DARQ, we also run the same benchmark on Azure Blobs with a simulated storage
device entirely in-memory. We can see that DARQ becomes bottlenecked by processing rather than
storage performance at around 900k op/s, while on slower storage, the cost of storage dominates
(around 30MB/s throughput for single blobs). For latency, we report sampled results after tuning
w such that we achieve around half of the maximum throughput, to limit the impact of queueing
delay on our measurements. We can see in Table 2 that DARQ achieves sub-millisecond latency for
non-persistent enqueue, and less than 5 ms on average for a (batched) persistent enqueue. Note
that similar to DPR operations in [50], DARQ operations are always first completed in-memory and
acked, at which point speculative processors can consume the message and truncate (if any) out
messages from the originating DARQ. Commit latency is the relevant metric for non-speculative
DARQ processors or other producers that require confirmation of persistence. We also report
latency on other storage backends, and see that slower storage (such as cloud blobs) only affects
non-speculative latency, as expected.

Processor Step Performance. We now study step performance of DARQ, similarly on the
performant L48v3 machines. We first measure throughput of DARQ steps by pre-loading 1 million
1KB input messages to DARQ, and processing them using a trivial processor that immediately

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:20 Tianyu Li et al.

Storage DARQ DARQ No-Val | Raw FasterLog

Memory | 829.74k op/s 923.56k op/s 2.75M op/s
Local SSD | 641.28k op/s 676.18k op/s 1.59M op/s
Page Blob | 30.17k op/s 30.52k op/s 34.54k op/s

Table 1. DARQ Producer Throughput

Storage | Median Latency | P99 Latency | Std. Dev.

SSD-Completion 0.12 ms 0.19 ms 0.89 ms
SSD-Commit 3.27ms 9.59ms 2.45 ms
Blob-Completion 0.08 ms 0.22 ms 0.13 ms
Blob-Commit 6.66 ms 18.94 ms 3.44 ms

Table 2. DARQ Producer Latency

Processor DARQ DARQ No-Val | Raw FasterLog

Colocated-ssd | 741.84k op/s 959.69k op/s 1.01M op/s
Remote-ssd | 215.15k op/s 250.31k op/s -
Colocated-blob | 33.22k op/s 33.45k op/s 33.54k op/s

Remote-blob | 32.32k op/s 32.83k op/s -
Table 3. DARQ Processor Step Throughput

marks encountered messages as completed. Recall that to perform a DARQ step, the processor has
to first scan the consumed messages in DARQ, compose the step locally, and then submit the step
to DARQ as a local function call or RPC; DARQ needs to validate that the steps are well-formed
and enforcing that it only steps previously unstepped messages. We run this microbenchmark with
both a co-located processor and a remote processor, and report the results in Table 3. As seen, a
co-located DARQ processor can process more than 700k operations per second, which is more than
the ingestion capacity of a single DARQ. Remote DARQ processors, in comparison, see a reduced
throughput of just above 200k operations per second, mostly due to remote processing overhead.
We also run the same benchmarks where we disable various parts of the step and measure the
resulting throughput in Table 3. Here we can see that the write-back to DARQ is the most significant
contributor to overhead, and step validation only presents a small overhead. Unsurprisingly, when
running with cloud storage, storage becomes the bottleneck compared to processing.

Effect of Speculation. Here, we study the effect of speculation on DARQ performance in
detail. We use a microbenchmark where we enqueue 1 million messages into a DARQ and attach a
co-located processor that steps by reflecting the message back to its sender (which locally hosts
a “sink” DARQ), which measures the latency between sending of a message and receiving it in
return. This benchmark is indicative of the cost of composition, as it corresponds to the overhead
DARQ introduces between starting a step and subsequent work (i.e., when downstream DARQ
processors are able to process the output messages). We run the same benchmark under two
scenarios — one where we increase the delay between each commit to simulate slow storage, and
one where we generalize the reflection benchmark to route messages through more DARQs before
eventually returning to the sender. We show the results in Figure 10 as measured on the weaker
but more numerous DS14v2 machines. As expected, speculative execution essentially “parallelizes”
storage overhead, and performs much better under high storage latency or when with many storage
roundtrips. The cost of speculative execution is in the complexity of engineering and in recovery
performance, which we study later.

Scalability Discussion. Even though DARQ supports high throughput, it is a serial bottleneck
due to its log-structured implementation. We have not found this to be an issue in our experience,
as in many applications, steps are computed and such computations are more likely to become a

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:21

—— Non-Speculative Speculative
u 30 —~150
E £
3201 100
c C
it 2
510/ 8 50
5 o
s 0 < 0
10 20 30 40 0 4 8 12 16
Commit Latency (ms) Pipeline Depth
(a) Varying Device Latency (b) Varying Pipeline Depth

Fig. 10. Effect of Speculation on Latency

bottleneck before raw I/O performance of DARQ. In the case where applications do bottleneck
on DARQ throughput, developers can resort to adding parallel devices/faster storage to boost I/O
performance, or structure their applications to benefit from multi-DARQ parallelism.

6.4 Failure Recovery

Lastly, we study the performance of DARQ under failure.

Microbenchmarks. We first study the performance of DARQ recovery in controlled microbench-
marks on L48v3s. In these experiments, we randomly populate DARQ with some amount of steps,
and then manually recover from the checkpointed state and measure the time it takes before the
processor is ready for normal operation (the first message reaches user code for consumption). Note
that this time does not include any time the user processor may take to reconstruct its local state
from DARQ as that is application-dependent. We show the results in Figure 11 varying the size of
the log to recover (measured by scale factor of the generation process, one scale factor corresponds
to roughly 40MB of log to replay). We first study recovery when the DARQ service is down and
must be reconstructed from storage. We can see that recovery speed here is largely dependent on
the speed of the underlying storage — for slower Azure blob storage, it takes significantly longer to
recover than fast, in-memory simulated storage. Overall, however, recovery speed is linear with
the size of the log to replay, and as we will show later, the average size of the log to replay in
a realistic application tends to be very small. Another scenario is when the DARQ service does
not fail, but attached processors fail or are replaced. In this scenario, replay is still necessary to
reconstruct processor local state (recall that processors expect self-messages upfront and only
incomplete messages on replay), but it is unnecessary to replay from storage, as the tail is likely to
be in memory in the DARQ service. Consequently, as shown, recovery performance is in general
better than DARQ failures, and is no longer dependent on storage backend performance.

End-to-end Benchmarks. To see recovery in action, we use the stream processing benchmark
from before and introduce a failure in the middle of an extended (90s) run on DS14v2s. We show
results of failure from both speculative and non-speculative modes. For brevity, we only show
results of failure on the second processor (windowed aggregator); failures on other processors yield
similar results but at a slightly different scale due to the difference in steady-state throughput at
each stage of the stream processing. We show our results when an entire DARQ node is killed in
Figure 12. Here we can see that for both configurations, there is a latency spike when a failure
occurs, as we wait for the DARQ service to re-establish itself and restore all previous connections,
which takes around 300ms in our measurement. The service is then quickly back to normal for
the non-speculative DARQ. For speculative DARQ, the system performs extra work for a DPR

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:22 Tianyu Li et al.

mEm Blob m=w SSD EEE Mem |
2104 gloo
3 >
210 2 50
: : |
©
Sy bbbl 5 el
s=1 2 4 8 16 32 64 128 s=12 4 8 16 32 64128
(a) DARQ Recovery (b) Processor Recovery (local)
—~600
(9]
—400

(@]

$ 200

S
0

s=12 4 8 16 32 64128

(c) Processor Recovery (remote)

Fig. 11. Recovery Microbench

4000
€ 3000
32000
o
+ 1000
-
0 - 0
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(a) Non-Speculative (b) Speculative

Fig. 12. Recovery from DARQ restart

rollback of other processors, which causes both the latency spike to be larger, and for recovery to
take longer.

We also show DARQ performance when introducing a processor failure in Figure 13. As there
is no need to restart the DARQ server, processor recovery is merely a matter of replaying the
outstanding portion of the log, which only takes a few milliseconds, and is barely noticeable on
the plot. This serves to show that DARQ-powered systems can tolerate compute node churn quite
well without excessive overhead. To better understand the outstanding log size during our run,
we sample untruncated DARQ size and show the results in Figure 14. We can see here that our
aggressive GC scheme (which truncates the log at 1MB granularity) successfully limits the replay
size to around 1.5 MB throughout the benchmark.

7 RELATED WORK

Resilient Systems. The concept of end-to-end application resilience in database systems dates
back to [28] and [27]. Ambrosia uses DBMS-style logging to provide resilience for general-purpose
message-passing distributed programming; however, the Ambrosia solution is built as sidecars [24]

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:23

200 : 200
€ 1501 € 150
3100 ~ 3100
c C :
0] 9]
0 0 :
0 20 40 60 80 0 20 40 60 80
Time (s) Time (s)
(a) Non-Speculative (b) Speculative

Fig. 13. Recovery from processor restart

70 20 40 60 80
a) Time (s)

Fig. 14. DARQ replay size during benchmark

to applications running on standalone machines. CReSt (and by extension, DARQ) is inspired
by Ambrosia, but instead uses an abstract I/O automata model to define resiliency. The DARQ
solution focuses on the service-oriented cloud model and is a storage service, distinguishing
it from the Ambrosia model. Other than Ambrosia, Netherite [30] and Temporal [21] similarly
build resiliency into message-passing systems, but are more specialized towards their respective
programming model, directly interfacing with application developers. Recent work [65, 72] have
proposed modeling workflows as dataflow problems, which makes it possible to repurpose existing
work for exactly-once stream processing for resilient workflows. In contrast, CReSt and DARQ are
geared towards infrastructure builders, who will likely use DARQ to build systems like Netherite,
Temporal, and stream processing. There has also been implementation of virtual resiliency at the
OS/VM level [34, 36, 52] but these works are typically much more low-level and therefore rely on
high-cost physical logging, whereas CReSt and DARQ only log logical steps and transitions.

Transactions, Queuing, and Streaming Systems. Another way to achieve resilience in cloud
systems is through multi-node transactions [35, 41, 49]. One might argue that CReSt is a form
of transaction in that it is an atomic, multi-operation primitive. We contend that while this is
conceptually true, CReSt is a highly specialized form of transactions for the use case of cloud
service composition. Most importantly, CReSt treats distribution and asynchronous communication
as first-class concepts in its formulation, making it more natural for existing distributed systems to
be modeled using CReSt. The inclusion of asynchrony in the CReSt model also allows for implemen-
tations of CReSt that does not require two-phase commit, as general transaction implementations
do. Recent systems such as Apiary [45] and DBOS [63] attempt to build distributed systems on
top of a distributed transaction processing layer, which would allow disparate applications to
perform ACID transactions across them, sidestepping the problem CReSt and DARQ solve. Other

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

117:24 Tianyu Li et al.

systems [61, 66, 71] similarly use transactions to orchestrate virtually resilient executions between
components; these systems are generally easier to work with than CReSt or DARQ, but are less
general as a result, as developers must extend their transaction mechanisms to cover any new
components. DARQ itself is inspired by classical (transactional) queuing systems [29, 42, 55], and
more recently, streaming systems such as Kafka [68] and Azure EventHubs [25]. Of particular
note is [29], which proposed using queues that orchestrate transactions with databases to ensure
recoverable and resilient client request handling. CReSt similarly relies on atomicity between
queues and some other data store, but chooses to co-locate queues with the data store on a single
node as the atomicity mechanism instead of transactions. DARQ’s log-based implementation is also
largely inspired by earlier write-ahead logging techniques [54, 56] from the database community,
and recent log-based solutions for distributed systems [26, 43].

Optimistic/Rollback-Replay Recovery. To our knowledge, speculative execution in distributed
systems is first proposed by [58]. DARQ’s reliance on speculative execution can be viewed as a class
of optimistic recovery [67]. We make heavy use of the recent DPR work [50], which in turn builds
on a wealth of prior work of rollback-recovery systems [37]. Such solutions are also implemented
recently in dataflow [38], streaming [62], and actor systems [69] to great effect.

8 CONCLUSION

Implementing fault-tolerance is increasingly important yet difficult and error-prone in today’s
highly distributed and disaggregated cloud environment. We presented CReSt, an abstraction for
building resilient cloud systems that extends the classical message-passing model with resilient
steps. We argue that many fault-tolerant cloud programming paradigm, such as stream processing
and workflows can be mapped to CReSt steps. We also design and implement DARQ, an efficient
framework that implements CReSt optimized for the cloud. Our benchmark shows that DARQ-
powered applications achieve resilience, are competitive in performance, and are easier to build
than from scratch. We believe CReSt and DARQ to be valuable tools in constructing fault-tolerant
modern cloud applications.

REFERENCES

[1] Amazon Step Functions. https://aws.amazon.com/step-functions/, retrieved 13-Oct-2022.
[2] Dv2 and DSv2-series. https://learn.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series, retrieved 13-Oct-
2022.
[3] Lsv3-series Virtual Machines. https://learn.microsoft.com/en-us/azure/virtual-machines/lsv3-series, retrieved 13-Oct-
2022.
[4] Proximity Placement Groups. https://learn.microsoft.com/en-us/azure/virtual-machines/co-location, retrieved 13-Oct-
2022.
[5] Saga Pattern. https://microservices.io/patterns/data/saga.html, retrieved 13-Oct-2022.
[6] Transactional Outbox Pattern. https://microservices.io/patterns/data/transactional-outbox.html, retrieved 13-Oct-2022.
[7] Apache Kafka. https://kafka.apache.org/, retrieved 15-Jan-2023.
[8] Kubernetes Pod Lifecycle. https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/, retrieved 18-Jan-2023.
[9] Streams and Tables in Apache Kafka: A Primer. https://www.confluent.io/blog/kafka-streams-tables-part-1-event-
streaming/, retrieved 19-Jan-2023.
[10] Confluent Developer — Optimizing for Latency. https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.
html, retrieved 26-Sept-2022.
[11] Fine-tune Kafka performance with the Kafka optimization theorem. https://developers.redhat.com/articles/2022/05/03/
fine- tune-kafka-performance-kafka-optimization-theorem#, retrieved 26-Sept-2022.
Amazon Lambda. https://aws.amazon.com/lambda/, retrieved 28-Aug-2022.
Amazon S3. https://aws.amazon.com/s3/, retrieved 28-Aug-2022.
Azure Cosmos DB. https://azure.microsoft.com/en-us/services/cosmos-db/, retrieved 28-Aug-2022.
Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
overview, retrieved 28-Aug-2022.

[12
[13
[14
[15

[RS Rt B '

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/lsv3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/co-location
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/transactional-outbox.html
https://kafka.apache.org/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/
https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/
https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.html
https://docs.confluent.io/cloud/current/client-apps/optimizing/latency.html
https://developers.redhat.com/articles/2022/05/03/fine-tune-kafka-performance-kafka-optimization-theorem#
https://developers.redhat.com/articles/2022/05/03/fine-tune-kafka-performance-kafka-optimization-theorem#
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:25

[16] Azure Functions. https://azure.microsoft.com/en-us/services/functions/, retrieved 28-Aug-2022.
[17] Azure Service Fabric. https://azure.microsoft.com/en-us/services/service-fabric/, retrieved 28-Aug-2022.

[18] Create a Windows VM with accelerated networking using Azure PowerShell. https://docs.microsoft.com/en-us/azure/

[28
[29

[30
[31
[32
[33

[34

[35

(36

[37

[38

[39

[40

[41

[42

[43

[44

]
]

— =

]
]

=

—

]

]

—

—

]

—

[t

=

virtual-network/create-vm-accelerated-networking-powershell, retrieved 28-Aug-2022.

FasterLog and the Microsoft FASTER project. https://github.com/microsoft/FASTER, retrieved 28-Aug-2022.
Kubernetes. https://kubernetes.io/, retrieved 28-Aug-2022.

Temporal. https://temporal.io/, retrieved 28-Aug-2022.

Azure Blob Storage. https://azure.microsoft.com/en-us/services/storage/blobs/, retrieved 30-Aug-2022.

Kafka Streams. https://kafka.apache.org/documentation/streams/, retrieved 30-Aug-2022.

Sidecar Pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar, retrieved 30-Aug-2022.

Azure Event Hubs. https://azure.microsoft.com/en-us/services/event-hubs/, retrieved 31-Aug-2022.

M. Balakrishnan, C. Shen, A. Jafri, S. Mapara, D. Geraghty, J. Flinn, V. Venkat, I. Nedelchev, S. Ghosh, M. Dharamshi,
J. Liu, F. Gruszezynski, J. Li, R. Tibrewal, A. Zaveri, R. Nagar, A. Yossef, F. Richard, and Y. J. Song. Log-structured
protocols in delos. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP *21, page
538-552, New York, NY, USA, 2021. Association for Computing Machinery.

R. Barga, D. Lomet, G. Shegalov, and G. Weikum. Recovery guarantees for internet applications. ACM Trans. Internet
Technol., 4(3):289-328, aug 2004.

R. Barga and D. B. Lomet. Phoenix: Making applications robust. SIGMOD Rec., 28(2):562-564, jun 1999.

P. A. Bernstein, M. Hsu, and B. Mann. Implementing recoverable requests using queues. SIGMOD Rec., 19(2):112-122,
may 1990.

S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon, C. S. Meiklejohn, and X. Zhu. Netherite:
Efficient execution of serverless workflows. Proc. VLDB Endow., 15(8):1591-1604, apr 2022.

S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S. Meiklejohn. Durable functions: Semantics for
stateful serverless. Proc. ACM Program. Lang., 5(O0OPSLA), oct 2021.

B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill: A
high-performance incremental query processor for diverse analytics. Proc. VLDB Endow., 8(4):401-412, dec 2014.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63-75, feb 1985.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus: High availability via asynchro-
nous virtual machine replication. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI'08, page 161-174, USA, 2008. USENIX Association.

U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running activities. In Proceedings of the 17th International
Conference on Very Large Data Bases, VLDB *91, page 113-122, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc.

G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution replay of multiprocessor virtual machines.
In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’08, page 121-130, New York, NY, USA, 2008. Association for Computing Machinery.

E.N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34(3):375-408, sep 2002.

I. Gog, M. Isard, and M. Abadi. Falkirk wheel: Rollback recovery for dataflow systems. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’21, page 373-387, New York, NY, USA, 2021. Association for Computing
Machinery.

J. Goldstein, A. Abdelhamid, M. Barnett, S. Burckhardt, B. Chandramouli, D. Gehring, N. Lebeck, C. Meiklejohn, U. F.
Minhas, R. Newton, R. G. Peshawaria, T. Zaccai, and I. Zhang. A.m.b.r.o.s.i.a: Providing performant virtual resiliency
for distributed applications. Proc. VLDB Endow., 13(5):588-601, Jan. 2020.

C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed file cache consistency. ACM
SIGOPS Operating Systems Review, 23(5):202-210, 1989.

J. Gray. Notes on data base operating systems. In Advanced Course: Operating Systems, 1978.

J. Gray and J. Gray. Queues are databases. In In Proceedings 7th High Performance Transaction Processing Workshop.
Asilomar CA, page 496. Prentice Hall, 1995.

Z. Jia and E. Witchel. Boki: Stateful serverless computing with shared logs. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP ’21, page 691-707, New York, NY, USA, 2021. Association for
Computing Machinery.

E.Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar,
J. E. Gonzalez, R. A. Popa, L. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view on serverless
computing, 2019.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-powershell
https://github.com/microsoft/FASTER
https://kubernetes.io/
https://temporal.io/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://kafka.apache.org/documentation/streams/
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://azure.microsoft.com/en-us/services/event-hubs/

117:26 Tianyu Li et al.

[45] P. Kraft, Q. Li, K. Kaffes, A. Skiadopoulos, D. Kumar, D. Cho, J. Li, R. Redmond, N. Weckwerth, B. Xia, P. Bailis,
M. Cafarella, G. Graefe, J. Kepner, C. Kozyrakis, M. Stonebraker, L. Suresh, X. Yu, and M. Zaharia. Apiary: A dbms-
backed transactional function-as-a-service framework, 2022.

[46] H.T.Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM Trans. Database Syst., 6(2):213-226,
jun 1981.

[47] R.Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski. Data management in microservices: State of the practice,
challenges, and research directions. Proc. VLDB Endow., 14(13):3348-3361, sep 2021.

[48] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121,
December 2001), pages 51-58, 2001.

[49] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage system. 1976.

[50] T.Li, B. Chandramouli, J. M. Faleiro, S. Madden, and D. Kossmann. Asynchronous Prefix Recoverability for Fast Distributed
Stores, page 1090-1102. Association for Computing Machinery, New York, NY, USA, 2021.

[51] T.Li, B. Chandramouli, and S. Madden. Performant almost-latch-free data structures using epoch protection. In Data
Management on New Hardware, DaMoN’22, New York, NY, USA, 2022. Association for Computing Machinery.

[52] H.Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual machine based on full system trace and replay. In
Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, page
101-110, New York, NY, USA, 2009. Association for Computing Machinery.

[53] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC 87, page 137-151, New York, NY, USA, 1987.
Association for Computing Machinery.

[54] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory oltp recovery. In 2014 IEEE 30th
International Conference on Data Engineering, pages 604-615, 2014.

[55] C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Guenthoer, and M. Kamath. Exotica: A project on advanced
transaction management and workflow systems. SIGOIS Bull., 16(1):45-50, aug 1995.

[56] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94-162, mar
1992.

[57] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the r* distributed database management system.
ACM Trans. Database Syst., 11(4):378-396, dec 1986.

[58] E.B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a distributed file system. SOSP ’05, page 191-205,
New York, NY, USA, 2005. Association for Computing Machinery.

[59] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual Technical

Conference (Usenix ATC 14), pages 305-319, 2014.

J. Postel. Rfc0793: Transmission control protocol. Technical report, 1981.

S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and J. Ren. Realizing the fault-tolerance promise of cloud storage

using locks with intent. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,

OSDI'16, page 501-516, USA, 2016. USENIX Association.

[62] P.F.Silvestre, M. Fragkoulis, D. Spinellis, and A. Katsifodimos. Clonos: Consistent causal recovery for highly-available
streaming dataflows. In Proceedings of the 2021 International Conference on Management of Data, pages 1637-1650,
2021.

[63] A.Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, S. Mathew, D. Bestor, M. Cafarella, V. Gadepally, G. Graefe, J. Kepner,
C. Kozyrakis, T. Kraska, M. Stonebraker, L. Suresh, and M. Zaharia. Dbos: A dbms-oriented operating system. Proc.
VLDB Endow., 15(1):21-30, sep 2021.

[64] E. Soisalon-Soininen and T. Ylonen. Partial strictness in two-phase locking. In Proceedings of the 5th International
Conference on Database Theory, ICDT 95, page 139-147, Berlin, Heidelberg, 1995. Springer-Verlag.

[65] J. Spenger, P. Carbone, and P. Haller. Portals: An extension of dataflow streaming for stateful serverless. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2022, page 153-171, New York, NY, USA, 2022. Association for Computing Machinery.

[66] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M. Hellerstein, and J. M. Faleiro. A fault-tolerance shim for
serverless computing. In Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys *20, New
York, NY, USA, 2020. Association for Computing Machinery.

[67] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans. Comput. Syst., 3(3):204-226, Aug. 1985.

[68] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J. Sax, J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta,
V. Madan, and]J. Rao. Consistency and completeness: Rethinking distributed stream processing in apache kafka. In
Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, page 2602-2613, New York, NY,
USA, 2021. Association for Computing Machinery.

—

[60
[61

—

[t

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

DARQ Matter Binds Everything: Performant and Composable Cloud Programming via Resilient Steps 117:27

[69] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov, and I. Stoica. Lineage stash: Fault tolerance off
the critical path. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 19, page 338-352,
New York, NY, USA, 2019. Association for Computing Machinery.

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. NSDI'12, page 2, USA, 2012.
USENIX Association.

[71] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and transactional stateful serverless workflows.
In Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation, OSDI'20, USA, 2020.
USENIX Association.

[72] W. Zorgdrager, K. Psarakis, M. Fragkoulis, E. Visser, and A. Katsifodimos. Stateful entities: Object-oriented cloud
applications as distributed dataflows. CoRR, abs/2112.00710, 2021.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 117. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Composable Resilient Steps
	2.1 Example Applications with CReSt
	2.2 Fail-Restart Model
	2.3 Implementing CReSt: A First Cut

	3 DARQ
	3.1 Processors and Self-Messages
	3.2 DARQ Implementation
	3.3 Integrating with Blackbox Services

	4 Speculative Execution
	4.1 Special-Case: Intra-Participant Speculation
	4.2 General Speculation

	5 Applications and Experience
	5.1 Case Study: Stream Processing
	5.2 Case Study: Resilient Cloud Workflow

	6 Evaluation
	6.1 Workloads and Benchmark Setup
	6.2 End-to-end Benchmarks
	6.3 DARQ Service Metrics
	6.4 Failure Recovery

	7 Related Work
	8 Conclusion
	References

