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ABSTRACT

The last decade has witnessed a huge increase in data being
ingested into the cloud, in forms such as JSON, CSV, and
binary formats. Traditionally, data is either ingested into
storage in raw form, indexed ad-hoc using range indices,
or cooked into analytics-friendly columnar formats. None
of these solutions is able to handle modern requirements
on storage: making the data available immediately for ad-
hoc and streaming queries while ingesting at extremely high
throughputs. This paper builds on recent advances in parsing
and indexing techniques to propose FISHSTORE, a concurrent
latch-free storage layer for data with flexible schema, based
on multi-chain hash indexing of dynamically registered pred-
icated subsets of data. We find predicated subset hashing to be
a powerful primitive that supports a broad range of queries
on ingested data and admits a high-performance concurrent
implementation. Our detailed evaluation on real datasets and
queries shows that FISHSTORE can handle a wide range of
workloads and can ingest and retrieve data at an order of
magnitude lower cost than state-of-the-art alternatives.
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1 INTRODUCTION

Over the last few years, driven by the increasing importance
of the cloud-edge architecture, we have been witnessing a
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huge increase in data being ingested into the cloud from a
variety of data sources. The ingested data takes various forms
ranging from JSON (a popular flexible nested data format
with high expressive power) to relational-style data in CSV
(comma-separated values) format, and binary formats such
as Google Protocol Buffers [13] and Apache Thrift [10].
Given the huge ingested data volume, the goal for inges-
tion has traditionally been to ingest data as fast as possible,
saturating storage bandwidth and incurring minimal CPU
overhead. These goals usually result in simply dumping raw
data on storage. More recently, however, there is an increas-
ing need [17, 33] to make the ingested data available “imme-
diately” for an ever-increasing range of analytic queries:

o Ad-hoc analysis queries that scan data over time ranges
(e.g., last hour of data). The scan may (1) include complex
predicates over possibly nested fields; (2) involve custom
logic to select a varying (but usually small) number of
records; and (3) access a small number of fields.

® Recurring queries that have identical predicates, but are
repeated over different time ranges (e.g., execute a report
over the last hour of data, repeated every hour).

o Point lookup queries that are based on various keys, e.g.,
join keys in case of streaming joins, that lookup the data,
often over a recent window.

o Streaming queries that are fed parts of the ingested data sat-
isfying custom predicates and based on the query schema.

1.1 Today’s Solutions

The traditional solution is to ingest data in raw form and
then make the data available for offline queries using peri-
odic batch jobs that load data into a warehouse, e.g., in an
optimized format such as Parquet [9]. This process is highly
CPU intensive and slow, incurs high latency before the data
is available for ad-hoc or repeated queries, and does not help
with point lookups or streaming queries, making it unsuit-
able for our target applications. Alternatively, we can fully
parse records and either load them into a database or update
a secondary range index over every (nested) attribute and
prefix during ingestion. However, full parsing, database load-
ing, and full secondary index creation are slow. For example,
we found that a typical JSON parser can only do full parsing
at a speed of around 100MB/sec per CPU core [36].
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1.2 New Trends in Parsing and Indexing

Recently, raw parsers such as Mison [36], Sparser [42], and
FAD.js [21] have transformed the parsing landscape by achiev-
ing speeds of more than 2GB/sec per core. They run on a
single thread and exploit batching, SIMD parallelism, and the
targeted parsing of a few fields to achieve high throughput.
However, we find that simply plugging in a fast parser into to-
day’s solutions does not help with ingestion because we have
to parse all fields. A modified approach, where only a few
fields are indexed, can relieve the parsing bottleneck, but does
not improve ingestion because the bottleneck shifts to the
heavy range indices such as RocksDB [48] and Bw-Tree [35]
used in practice, which incur heavy write amplification [44],
random I/Os, and CPU overheads.

Persistent key-value stores such as FASTER [24] have re-
cently been shown to offer unprecedented performance at
very low CPU cost — more than 150 millions ops/sec on a mod-
ern CPU. FASTER consists of a lightweight cache-optimized
concurrent hash index backed by a record-oriented hybrid
log. The log is ordered by data arrival and incurs no write
amplification. A large portion of the log tail is retained in
an in-memory circular buffer. While promising, such indices
are designed to serve point lookups, inserts, and updates,
and as such are insufficient for our target applications.

1.3 Introducing FISHSTORE

In this paper, we advocate a different approach. We intro-
duce a new storage layer for flexible-schema data, called
FisHSTORE", that combines fast parsing with a hash-based pri-
mary subset index. First, FISHSTORE takes as input a generic
data parser that exposes the ability to efficiently parse a batch
of records and extract a given set of fields from each record
in the batch. Second, FIsHSTORE allows applications to dy-
namically register (and deregister) predicated subset functions
(PSFs) over the data. Briefly, PSFs allow applications to iden-
tify and efficiently retrieve different subsets of records, and
work as follows. Users provide a function f : R — D that
maps each record r € R to a value d in domain D, based on a
given set of fields of interest for the PSF. FIsHSTORE allows
users to retrieve all records satisfying a given PSF and value.
This paper shows that PSF-based indexing is powerful yet
admits an efficient and scalable implementation. For example,
it can support point lookups, equi-joins, selection predicates,
prefix queries, and predefined range queries over the data.

ExaMpLE (MACHINE TELEMETRY). Consider the application
depicted in Fig. 1, where machines report telemetry data for
ingestion (Sec. 2 has the details). An analyst wishes to inves-
tigate machines with low CPU and high memory utilization.
They register a PSF f that indexes records with CPU usage

IF1sHSTORE stands for Faster Ingestion with Subset Hashing Store.

lower than 15% and memory usage greater than 75%. Records
matching this condition are now indexed and available for
subsequent analysis. As another example, they may wish to
index (or group) the data by machine name using PSF f,, which
allows drilling down into a particular machine’s logs.

Sec. 2 describes PSFs in detail and provides more exam-
ples of its use in our target applications involving ad-hoc,
recurring, and streaming analysis.

1.4 FisuSTORE Components

We overview the FISHSTORE system and its challenges in
Sec. 4. Briefly, it consists of two major components: (1) in-
gestion and indexing; and (2) subset retrieval.

Ingestion & Indexing. FISHSTORE ingests data concurrently
into an immutable log (in ingestion order) and maintains a
hash index. For every active PSF f and non-null value v € D,
we create a hash entry (f,v) that links all matching log
records for that entry in a hash chain. Based on the regis-
tered PSFs, the desired fields are provided to the parser for
each data batch. FISHSTORE evaluates the active PSFs and
creates or updates hash chains. Unlike hash key-value stores,
a record may be part of more than one hash chain, with a
variable length record header of pointers to fields and other
records. Therefore, we develop a new hash index with latch-
free PSF registration (Sec. 5) and latch-free data ingestion
with multiple hash chains (Sec. 6).

Subset Retrieval. FISHSTORE supports scans for records
matching PSF values (f, v) over a part of the ingested log, and
returns the requested fields for matching records. FISHSTORE
does not build new indices on older data; therefore, the hash
chain for a PSF may not cover the entire log. Hence, Fisu-
STORE performs an adaptive scan that combines full scans
and index lookups. Interestingly, even within the indexed
portion of the log, based on selectivity, it may sometimes be
preferable to perform a full scan [34]. FISHSTORE performs
an adaptive mix of index traversals and full scans to get the
highest performance (Sec. 7).

To recap, FISHSTORE combines fast parsing with light-
weight dynamic hash indexing to provide an extremely fast
and general-purpose storage layer for analytics. PSF registra-
tion is similar in concept to dynamically attaching debuggers
to the data. Ingestion performance depends on the number
of active PSFs and fields of interest. This pattern retains the
performance benefits of batched partial parsing, arrival-time-
based logging, and hash indexing. Extensive evaluations on
real workloads in Sec. 8 show that FISHSTORE can achieve an
order of magnitude higher ingestion and retrieval speeds, and
can saturate a modern SSD’s bandwidth (2GB/sec) using only
a few cores (usually less than 8) on one machine, showing
that we can use inexpensive CPUs with FiIsuSTORE. Without
the SSD bottleneck, FiISHSTORE achieves up to 16.5GB/sec
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Figure 1: Machine Telemetry PSF Example

ingestion speed for a real workload, showing its potential
on future disks, RAID, and RDMA storage.

F1sHSTORE is row-oriented with record headers, and sits
early in the ETL pipeline. Older raw data (or its more re-
fined predicated subsets) may eventually migrate to formats
such as Parquet for offline analytics, e.g., using batch jobs.
F1sHSTORE is compatible with, but orthogonal to, a streaming
engine. FISHSTORE serves as a storage layer for data ingestion.
Streaming engines process ingested data on-the-fly, typically
using transient in-memory structures. They may use FisH-
STORE to push down predicates and build shared indices
over ingested data. Our work introduces the need for a query
processing stack that leverages our interface to optimally
execute ad-hoc, recurring, and streaming queries. These ex-
tensions are outside the scope of this paper. We cover related
work in Sec. 9, and conclude the paper in Sec. 10.

2 FISHSTORE CONCEPT AND EXAMPLES

We describe predicated subset functions and show how in-
dexed PSFs allow FISHSTORE to be used in many applications.

2.1 Predicated Subset Functions

A central concept in FISHSTORE is the notion of a predicated
subset function (PSF), which logically groups records with
similar properties for later retrieval.

Definition 2.1 (Predicated Subset Function). Given a data
source of records in R, a predicated subset function (PSF) is a
function f : R — D which maps valid records in R, based on
a set of fields of interest in R, to a specific value in domain D.

For example, the field projection function II¢(r) is a valid
PSF that maps a record r to the value of its field C. If r does
not contain field C or its value for field C is null, we have
IIc(r) = null.? Given a set of PSFs, a particular record may
satisfy (i.e., have a non-null value for) several of them. We
call these the properties of the record:

Definition 2.2 (Record Property). A recordr € R is said to
have property (f,v), where f is a PSF mapping R to D and
f(ry=veD.

ZNote that we do not preclude the use of null as a valid indexed value; we
can simply map it to a different special value if desired.

{id: 15646156, type: “PullRequest”, actor: {id : 234, name:

“das” ), repos {id: 666, name: “spark”,...}, public: true}

" {id: 15646164, type: “Push”, actor: {id : 546, name:
“matei” }, repo: {id: 666, name: “spark”,...}, public: true}

(f3, "das")

{id: 15646166, type: “Push’, actor: {id : 546, name:
“matei” ), repo: {id: 777, name: “storm’”,..}, public: false}

{id: 15646170, type: “PullRequest”, actor: {id: 230, name:
“karthik“}, repo: {id: 666, name: “spark’,...}, public: true}

1
1
1
1
: {id: 15646171, type: “Push”, actor: {id: 230, name:
1
1
1

(f3, "matei")

“karthik” }, repo: {id: 888, name: “heron’,..J, public: true}

(fs, "karthik")

fi: repo.name == “spark” && type == “PullRequest”
(fz:true)(/l true) foi repo.name == “spark” && type == “Push”

3 actor.name

Figure 2: Github Data PSF Example

As a PSF can be an arbitrary user-defined function, this
abstraction covers a large range of applications. With the
field projection function II- mentioned above, users can
logically group records with the same value of field C, which
is useful for operations such as joins and lookups. Similarly,
if we have a boolean function P that evaluates over a record,
we can use (P, true) and (P, false) to logically group the
matching and non-matching records. PSFs and their fields
of interest are dynamically registered, enabling ingestion of
data with flexible schema.

2.2 Example: Machine Telemetry

Expanding on the machine telemetry example from Sec. 1,
Fig. 1 shows a sample dataset and several PSFs. PSFs f; and f,
were covered in Sec. 1. The data may be prepared for analysis
by ranges of CPU usage via PSF f;, which creates buckets
for different CPU usage ranges. Fig. 1 depicts hash chains
for each property (f, v). The blue boxes to the left represent
header entries corresponding to records on the right. Note
that different records may satisfy a different number and set
of properties; for instance, the second record satisfies only
two active properties.

2.3 Running Example: Github Analytics

As a more complex example, consider a dataset of Github
activity in JSON format. It consists of activity such as check-
ins and pull requests (Fig. 2). Initially, there are no PSFs
registered, so the data is ingested without parsing or indexing.
Users can prepare the data for various kinds of analyses:

o Ad-hoc analysis: Suppose a user wishes to analyze pull
request data related to Spark. They register a PSF f; that
parses the relevant fields (type, repo.name, etc.) and in-
dexes records matching ‘repo.name == "spark" && type
== "PullRequest"’ in a chain. Analysts can then run a
mix of drill-down queries over the subset, on various por-
tions of the log. Subset retrieval uses a mix of scans (for
older data) and index chain traversal (for newer data). Sim-
ilarly, we could make the data ready for per-repository
analysis by grouping records using repo.name as the PSF.

® Recurring queries: A user may register a PSF for a recurring
query, e.g., compute an hourly list of top-k Spark commit-
ters over the last day. On registering the PSF f; for true



values of ‘repo.name == "spark" && type == "Push'"’,
F1sHSTORE begins indexing the data, making subsequent
executions of the query faster as more data gets indexed.

e Point lookups: Suppose a user wishes to join an input
stream of tweets with Github commits from the same user
in the last minute. We simply register a PSF f; that indexes
all values of field actor . name, to enable such fast lookups
aided by the in-memory portion of the log that retains all
recent records accessible via the index. Multiple streaming
joins may share the same index as well.

e Streaming queries: Consider a user who wishes to incre-
mentally compute the average number of repositories cre-
ated under organization “Yahoo” per hour, per country.
They can register the relevant fields and predicate with
F1sHSTORE, which will then deliver data as it is ingested.
The now-schematized data can be fed to a streaming en-
gine for computing query results incrementally.

3 BACKGROUND: INDEXING & PARSING

Before describing FishStore’s architecture, we provide a brief
background on FASTER and Mison.

3.1 Background on FASTER

This section overviews FASTER [24], our recent open-source®
concurrent latch-free hash key-value store with support for
larger-than-memory data. FASTER caches the hot working
set in shared memory, and reports a scalable throughput of
more than 150 million ops/sec, making it a good starting
point for FISHSTORE’s index.

Fig. 3 shows the overall architecture of FASTER. Towards
a scalable threading model, it adopts an epoch-based syn-
chronization framework (Sec. 5.3) which facilitates lazy prop-
agation of global changes to all threads via trigger actions.
FASTER has two components: a hash index and a log struc-
tured record store called a hybrid log. The index serves as
a map from the hash of a key to an address in a logical ad-
dress space, and is checkpointed regularly. Keys that have
the same hash value share a single slot in the index. All reads
and updates to the slots are atomic and latch-free. The hy-
brid log record store defines a single logical address space
that spans main memory and secondary storage. The system
maintains a logical address offset that demarcates addresses
on disk from addresses in main memory. Addresses beyond
this offset (i.e., at the tail of the log) are mapped directly to a
fixed-size in-memory circular buffer. The in-memory tail is
further divided into an immutable and mutable region. Each
record in the hybrid log contains a fixed-length header, a
key, and a value. Records corresponding to keys that share
the same slot in the hash index are organized as a reverse
linked list: each record contains a previous address in its

3Link: https://github.com/Microsoft/FASTER
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Figure 3: FASTER Index and Log Architecture

header pointing to the previous record mapped to that slot.
The hash index points to the tail record of this linked list.

FisHSTORE borrows the basic index design and epoch
model of FASTER. It uses a new multi-key organization and
insertion technique with variable-sized headers to support
PSFs. As FIsHSTORE is designed for data ingestion, it uses the
hybrid log as append-only, by disabling its mutable region.
By leveraging FASTER’s techniques for in-place updates in
the tail the log, we believe updates can also be supported
with modifications to FIsuSToRE; this is future work.

3.2 Background on Mison

FISHSTORE exposes a generic parser interface which should
support batched parsing of a few fields of interest. For per-
formance, we plug in Mison [36], our fast parser for semi-
structured data such as JSON and CSV. Motivated by the
observation that applications typically make use of only a
few fields, Mison can push down projections into the parser.
Users specify the fields of interest when constructing the
parser, for optimal performance. Mison follows a two-step
approach. It first builds a structural index using SIMD to
identify the positions of all fields. Then, it speculates on the
schema and directly jumps to the position where it may most
likely to find the user-specified fields so as to avoid wasted
work parsing irrelevant fields. The parser is used unmodified
by FISHSTORE, instantiated by threads as the fields of interest
vary over time (Sec. 5.3).

4 FISHSTORE SYSTEM OVERVIEW

FISHSTORE is a storage system for data with flexible schema,
that supports fast ingestion with on-demand indexing based
on PSFs. We now describe FISHSTORE’s interface, provide
an overview of the system, and overview the technical chal-
lenges addressed in the rest of the paper.

4.1 Operations on FISHSTORE

F1sHSTORE supports three kinds of operations: data ingestion,
on-demand indexing, and record retrieval.

Data Ingestion. FISHSTORE receives batches of raw records
from multiple threads in parallel. Based on the active fields
of interest, it uses the user-provided data parser to parse
specific fields. It then indexes records based on their prop-
erties and inserts them into storage in a latch-free manner



(Sec. 6). FIsHSTORE works with data larger than memory, with
the most recent data in an (immutable) in-memory circular
buffer. As pages are filled and made immutable, FISHSTORE
automatically pushes them to storage.

On-demand Indexing. FISHSTORE allows users to register
and deregister PSFs over a data source on-demand. Based on
the set of active PSFs, FISHSTORE builds a subset hash index
over the properties defined by a PSF f and a value v in its
domain. Specifically, for each property of interest (f, v), F1su-
STORE maintains a hash chain that contains all records r € R
such that f(r) = v. Thus, a record may be part of more than
one hash chain. Further, because only non-null PSF values
are indexed, we can skip indexing uninteresting records in
order to save storage cost. For example, we may only index
records that evaluate to true for a boolean PSF. All index
entries are built right next to the record (in a variable-sized
record header) so as to reduce retrieval cost and maximize
ingestion speed.

F1sHSTORE does not re-index data that has already been
ingested into the system. This design implies a need to track
the boundaries of an index’s existence. When a PSF is regis-
tered, FISHSTORE computes a safe log boundary after which
all records are guaranteed to be indexed. Symmetrically, F1sH-
STORE computes a safe log boundary indicating the end of a
specific index, when the user deregisters a PSF. We can use
these boundaries to identify the available PSF indices over
different intervals of the log. One can orthogonally build sec-
ondary indices on historical using our techniques or standard
indices such as B-trees (Appendix A).

Record Retrieval. FISHSTORE supports retrieving records
satisfying a predicate within a range of the log. Two scanning
modes are supported, full scan and index scan. Full scan goes
through all records and checks if the predicate is satisfied. In-
dex scan uses hash chains to accelerate data retrieval. When
records within a log range are partially indexed, FISHSTORE
breaks up the request into a combination of full scans and
index scans. Note that point lookups naturally fit within this
operation, and results can be served from memory if the cor-
responding portion of the log is in the in-memory immutable
circular buffer. PSFs can support pre-defined range queries
over fields (within a log range) by building the correspond-
ing hash chains. For arbitrary range queries on older data,
one may use post-filtering over pre-defined ranges or build
secondary indices as noted earlier.

4.2 System Architecture

Fig. 4 shows the overall architecture of FISHSTORE. It consists
of the hybrid log serving as the record allocator, a hash
index that holds pointers to records on the log, a registration
service, and a set of ingestion workers.

We disable the mutable region of the log and use it in an
append-only manner. When a record is ingested, FISHSTORE

Incoming Data

- T
tl 1 I
Parser & :

Pred Evaluator h

I

I

I
]
I

TR
=1

Hash Table Indexing Requests

Index Scan
s l l 1
\

~»

Registration
Meta

|

Data Ingestion Workers |

Full Scan

N
\

\ Y

Write Ahead Log

Figure 4: Overall FISHSTORE Architecture

allocates space on the log using an atomic fetch-and-add
operation on the tail. The tail presents in an in-memory
circular buffer of pages, and filled (immutable) pages are
flushed to disk. We maintain a unified logical address space
across memory and disk, simplifying record indexing and
access. The hash table serves as the entry point; each entry
in the hash table contains a pointer to the log where records
sharing the same (f, v) pair are chained together. The hash
table and log hash chains together serve as our index layer.
Appendix B discusses our choice of using a hash index in
more details.

All indexing requests are reflected in the registration meta-
data of F1suSToRE. Through an epoch-based threading-model,
indexing request are propagated to all ingestion worker
threads. Based on the meta-data, incoming data are parsed
and evaluated against user-defined predicates. Based on the
results, ingestion workers collaboratively update the hash
table and hash chains on the log in a latch-free manner.

A user can issue a subset retrieval scan of any range of
the log to FIsuSTORE. The scan is satisfied by a combination
of full scan and index scan operations. A full scan reads
one page at a time, checking each record for the requested
property. An index scan starts from the hash table and goes
through the hash chain on the log, so as to retrieve all records
satisfying the property. Lightweight post-processing is used
to eliminate incorrect results due to hash collisions.
Challenges. Retaining high ingestion performance required
a careful design that overcomes several challenges, summa-
rized below and detailed in the rest of the paper:

o Designing a fast concurrent index which supports PSFs is
non-trivial. FISHSTORE introduces the subset hash index,
which combines hashing with a carefully designed record
layout, to solve this problem. (See Sec. 5)

o F1sHSTORE needs be able to acquire a safety boundary for
on-demand indexing. We utilize the epoch-based thread-
ing model to help us find safe boundaries within which a
specific index is guaranteed to exist. (See Sec. 5.3)

e Data ingestion should be latch-free so as to achieve high
throughput on multiple threads. FIsHSTORE adopts a novel
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lock-free technique to update the index with very low cost
even during heavy contention. (See Sec. 6)

e Scanning through hash chain on disk involves many ran-
dom I/Os, which can hurt the performance of subset re-
trieval. FISHSTORE introduces an adaptive prefetching tech-
nique which actively detects locality on disk and effectively
reduces the number of I/Os issued. (See Sec. 7)

5 SUBSET HASH INDEX

We introduce a fast index called subset hash index, which
allows us to link all records with the same property on the
same hash chain. Recall that a property is described by a PSF,
which is defined as f : R — D (R is the record set), and a
value v € D. In other words, our goal is to index all records
r € Rsuch that f(r) = v. The subset hash index is organized
as a hash table that indexes logical groups of records using
hash chains. Each property (i.e., a (f, v) pair) is assigned a
hash signature. The hash chain, which chains up all records
with a specific property, starts from its corresponding hash
entry in the hash table. Therefore, when retrieving records
matching a property, we can calculate its hash signature,
locate the hash entry, and follow the hash chain to retrieve
all qualifying records.

Fig. 5 continues the Github example (Sec. 2). Suppose the
user requests indices on distinct values of field ‘repo. name’,
and true values for predicate ‘type == "PullRequest" &&
repo.name == "spark'’, and predicate ‘type == "Push"
&& public == false’. Using a hash signature H, we assign
each property to an entry in the hash table. When the user
requests records whose ‘repo.name == "spark'’, we cal-
culate H(repo. id, "spark"), find the hash entry, and follow
the hash chain to retrieve all qualified records (checking for
hash collisions). A record can be on several hash chains at
the same time: the bottom record satisfies both ‘repo.name
== "heron"’ and ‘type == "Push" && public == false’,
and shows up on the hash chains of both properties.

5.1 Hash Signature of Properties

When constructing the subset hash index, each property
needs to be assigned a hash signature. This helps distinguish
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different properties in the hash map and facilitates subset
retrieval by providing an entry point in the hash table. As
F1sHSTORE supports arbitrary properties that can be defined
by f(r) = v, it is non-trivial to define a universal hash func-
tion for each property. To solve this problem, FISHSTORE
introduces a naming service that assigns deterministic IDs to
PSFs. A PSF consists of a list of fields of interest and a function
evaluated over these fields. When a new PSF is registered, the
naming service assigns it an ID. We build the hash signature
of a property (f,v) as H(f(r) = v) = Hash(fid(f).concat(v)),
where fid(f) is the ID assigned by the naming service and
Hash is a hash function. For example, the signature of prop-
erty (repo.name, "spark") is the hash value of the concate-
nation of the field ID of repo.name and the string "spark".

5.2 FisHSTORE Record Layout

A key difference between the subset hash index and standard
secondary indices is that its index entries live right next to
the data, even if they are not clustered. With a traditional
secondary index design, each index entry includes a pointer
to the record allocated in a heap file to avoid duplication.
However, this causes a second I/O for index-based record ac-
cess. FISHSTORE avoids this overhead by collocating records
with the index during ingestion. Each record may contain
multiple index entries, but only for PSFs satisfied by the
record, which limits space overhead. For example, a PSF that
indexes true values of a selective predicate incurs the header
overhead only for records that match the predicate. Due to
the typically large flexible-schema payloads (1KB to 11KB
- see Sec. 8.1), our layout introduces low storage and scan
overhead (see Sec. 8.3). We note that these overheads may
be higher for small binary payloads that match many active
PSFs. In such cases, and for indexing previously ingested
data, we can store key pointers separately, at the cost of an
additional cache miss or I/O during lookup (see Appendix A).

Fig. 6 shows the physical layout of a record in FISHSTORE,
which contains four regions: header region, pointer region,
an optional value region, and the payload region. Header
region contains the basic information of the record including
if it is invisible or deleted and its checkpoint version number.
In addition, the record header also includes the size of record



(record_size) and how many properties the record owns
(#ptrs). Note that the number of properties for a record is
also the number of hash chains containing the record. The
optional value region may contain evaluated values for some
registered PSFs, and is described below. Finally, the payload
region contains the raw data in bytes with its length.

The pointer region contains a variable number of fixed-
sized key pointers which serve as index entries in the hash
chain of the subset hash index. Each key pointer contains
an offset that can help navigate back to the record header,
and a previous address pointing to the previous entry in
the hash chain. Note that it is the key pointers that form
the hash chain rather than the records. The hash entry in
the hash table and the previous address in a key pointer
always point to the corresponding key pointer of a record
that has a property with the same hash signature. This design
makes hash chain traversals efficient: if key pointers instead
pointed to the record header, we would have to check each
key pointer in order to find the right hash chain to follow.

Each key pointer contains enough information for a reader
exploring the hash chain to check whether the current record
satisfies the property or the record was accessed due to a hash
collision. A key pointer needs to contain the identification
of its corresponding PSF f and a way to access the evaluated
value of f over the record. If the evaluated value is small (e.g.,
aboolean), it may be stored inline. Otherwise, the key pointer
contains a pointer to the evaluated value either directly in
the payload, or in the optional value region.

We use a few bits (mode) to distinguish different classes of
key pointers. Fig. 6 shows some example modes. When the
PSF domain is boolean, we simply inline the PSF ID along
with a bit representing true or false inside the key pointer.
If the PSF evaluates to a variable length value, we need to
store a pointer to the evaluated value. For instance, if the
PSF projects a field, we store the offset and size of the field
in the payload, as part of the key pointer. If the value is not
available in the payload, we can evaluate it during ingestion
and store it in the optional value region. The key pointer
would then store the offset and size of this evaluated value.

5.3 On-Demand Indexing

In FISHSTORE, users user can start or stop building indices
over a PSF without blocking data ingestion. To achieve this,
we take advantage of the epoch framework [24]. In an epoch-
based system, we maintain a shared atomic counter E, called
the current epoch, that can be incremented by any thread.
Each thread T has a thread-local version of E called Er.
Threads refresh their local epoch value in order to catch
up the shared global counter E periodically. When the mini-
mum value of all thread-local epoch number is greater than
¢, we call epoch c safe. This indicates all threads are aware
of changes made up to epoch ¢ and we can process actions
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Figure 7: On Demand Indexing

based on the system state in epoch c. The epoch framework
provides an interface for users to define a trigger function
that automatically evaluates when an epoch becomes safe.

FISHSTORE uses a multi-stage approach to apply changes
to index meta-data. Fig. 7 shows the procedure for applying
a list of index registration and deregistrations. FISHSTORE
keeps two versions of index meta-data; all ingestion work-
ers refer to one of them as the current meta-data. When
there are no index altering requests, the two versions are
identical, and FISHSTORE is in state REST. When the user
pushes a list of index altering requests to FISHSTORE, the
system shifts its stage to PREPARE and immediately applies
these changes to the inactive meta-data. Then, FISHSTORE
sets the current meta-data to the one with applied changes,
and increments the global epoch with an action to apply the
changes to the unchanged version. Then, the system stage
shifts to PENDING, and all threads start to observe that the
current meta-data has been changed when they refresh their
epoch. This refresh may require the ingestion worker to re-
build its parser so as to parse newly registered fields, and
shift its meta-data to the new one. When the epoch for apply-
ing index altering requests becomes safe (which also means
all ingestion workers have observed and applied changes),
F1sHSTORE automatically applies all changes to the old meta-
data. This makes both meta-data identical as before, and the
system shifts its state back to REST.

Since indexing is on demand, FISHSTORE needs to main-
tain and provide information about which log interval ranges
have which subset indices available, so that returning results
via the index is sound. Thus, we need to derive the safe bound-
ary for both index registration and deregistration. Note that
when the system state shifts from PREPARE to PENDING,
no ingestion worker would have yet stopped indexing the
deregistered properties. Thus, the tail of the log at that in-
stant can serve as the safe deregistered boundary. Similarly,
when the system state shifts from PENDING to REST, all
threads would have started indexing the newly registered
properties. Hence, the tail of the log at that instant can serve
as the safe registration boundary.
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6 DATA INGESTION IN FISHSTORE

FisuSTORE allows concurrent data ingestion; each ingestion
thread is called an ingestion worker and is registered with
the epoch framework. The incoming data goes through four
phases before completing ingestion into FIsSHSTORE: (1) pars-
ing and PSF evaluation; (2) record space allocation; (3) sub-
set hash index update; and (4) record visibility. We next go
through these phases in more details.

6.1 Parsing and PSF Evaluation

When incoming data lands at an ingestion worker, it uses
the provided parser interface to parse out the active fields
of interest in a batch of data. Thus, FISHSTORE can benefit
from both batched SIMD-based parsing and the capability
of parsers to target a smaller subset of fields efficiently. In
FIsHSTORE, each data ingestion worker owns a thread-local
parser. Parsers typically require users to indicate the set
of fields to be parsed when being instantiated. Therefore,
whenever a worker detects changes in the fields of interest
(due to PSF registration and deregistration), it recalculates
the minimum field set for index building and recreates its
thread-local parser. Finally, after parsing out essential fields,
the worker annotates the position of a field and evaluates
all requested PSFs for each record. This provides necessary
information for indexing building when the record is actually
ingested into FISHSTORE.

6.2 Record Space Allocation

As mentioned in Sec. 4.2, the space for ingested records is
allocated on the log. When the data ingestion worker fin-
ishes Phase 1, it can compute how much space the record re-
quires when ingested into FISHSTORE. For example, a record
whose raw data size is s and has k properties, it will requires
8 + 16k + [ 5] X 8 bytes when the optional value region is
empty according to Fig. 6. Next, the worker shifts the tail
of log atomically by the total space that incoming records
require. The tail of the log is maintained in an in-memory cir-
cular buffer for concurrent read access. We cover the details
of concurrent log maintenance in Appendix C. Finally, the
worker copies the raw data to the payload region and fills up
the record headers. Since we have yet to update the index,
the record is inserted with its visibility bit in the header set to

false. Any reader that touches an invisible record ignores
it. This guarantees the atomicity of record insertion.

6.3 Index Update & Record Visibility

Once a record is successfully allocated on the log, the inges-
tion worker starts updating the hash chains of all proper-
ties that record has. For high performance, FISHSTORE bor-
rows the latch-free cache-friendly hash table introduced in
FASTER [24]. When we wish to update a hash chain, we
simply locate its hash entry in the hash table and perform a
compare-and-swap (CAS) making it point to the correspond-
ing key pointer of the record. When the CAS fails, we have
to mark the record as invalid, reallocate space on the log and
try again. If we simply try to CAS again without reallocating
the record at the log’s tail, there may exist a forward hash
link pointing from a low address to a high address. This com-
plicates the structure, as well as operations such as garbage
collection, checkpointing, and failure recovery. Further, for-
ward links cause problems when we traverse the hash chain,
as we may visit a record in memory after getting into disk.
Since disk I/Os in FISHSTORE are asynchronous, we would
have to protect I/O threads with the epoch framework to
ensure the safety of the in-memory records they may access.
However, this is very expensive due to the large number of
I/O threads in practice. Thus, we need to ensure that there
are no forward hash links in the log.

However, the reallocation solution above does not work
well in FISHSTORE due to two reasons: (1) Many records may
share the same property, which usually results in a CAS
failure. (2) Each record needs to update multiple hash chains;
CAS failure on any hash chain will cause reallocation. As a
result, this solution can cause substantial write amplification.
It wastes disk bandwidth and makes FISHSTORE not scalable
on multiple threads (Sec. 8.3). To solve this problem, we
propose a novel CAS technique that guarantees zero write
amplification and no forward hash links. When a CAS fails,
there are two scenarios we have to handle:

Fig. 8(a) shows the easy case where the hash entry happens
to point at a lower address than the current key pointer. In
this case, it is safe to try the CAS again because we still
have a chance to place the record at the head of hash chain
without creating a forward hash link. To do this, we simply
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change the previous address of the key pointer to where the
hash entry pointed and try the CAS again.

When we find that the hash entry points to a higher ad-
dress than the current record, Fig. 8(b) shows how we handle
it. In this case, F1IsHSTORE will immediately realize that we
cannot perform the CAS at the hash entry for the key pointer
as it will definitely cause a forward hash link. Instead of try-
ing to swap out the hash entry, we start to find the right
place in the hash chain where the key pointer should be. De-
note the address of current key pointer as A. We traverse the
hash chain starting from the hash entry until we find a key
pointer £ whose address is higher than A while its previous
address is lower than A. It is clear that the key pointer should
be swapped into the hash chain right after . Now we alter
the current key pointer pointing to the previous address of
% and try CAS on P, making it point to A.

If this CAS still fails, we will never fall back to the easy
case as the hash entry is already pointing to a higher address.
Fig. 8(c) shows how to handle this case. Specifically, we start
traversing the hash chain from % until we find P’ after
which the current key pointer should be swapped in, and
then repeat the above process until the CAS succeeds. For
more details, we outline and analyze the hash chain update
algorithm in Appendix D.

Finally, the record is made atomically visible to readers
(covered next), by setting the visibility bit in the header. We
cover failure recovery of FISHSTORE in Appendix E.

7 SUBSET RETRIEVAL IN FISHSTORE

This section describes the scan interface to FISHSTORE, con-
current log maintenance to aid subset retrieval, and our adap-
tive prefetching technique to speed up index scans.

7.1 Subset Retrieval Interface

F1sHSTORE allows a user to retrieve all records satisfying a
given property in a continuous range of the log. Specifically,
user provides a property (f, v) and the desired address range
in the FisHSTORE log. Note that not all records satisfying a
given property will be indexed in the log range because of
on-demand indexing. FISHSTORE breaks the request into a
combination of index scans and full scans using knowledge
of safe registration and deregistration boundaries for all
PSFs. Full scans have to parse and evaluate the requested
PSF against each record encountered.

Users are also allowed to send an early stop signal to
FisaSToRE through a Touch function, when they wish to
terminate the scan early. This is useful, for example, when

the desired record is found or the user wants a limited sample
of satisfying records for further analysis.

7.2 Adaptive Prefetching

When the user issues an index scan to FISHSTORE, it searches
the corresponding hash entry in the hash table and follows
the hash chain to retrieve all qualified records. When the
log is totally in-memory, exploring the hash chain is not ex-
pensive. However, if the exploration lands on storage, it will
issue random I/Os even when retrieved records may actually
be continuously located on the log. Issuing too many ran-
dom I/Os can significantly hurt scan performance, making it
worse than a full scan over the log page by page. There are
two reasons why issuing random I/Os on the hash chain is
significantly slower than sequentially scanning the log: (1)
Issuing more I/Os will cause more expensive system calls
through the OS kernel. (2) I/Os required to explore a hash
chain are small and dependent, i.g., we do not know the next
address to request until the previous I/O has completed. As
a result, the I/O queue is almost empty most of the time and
the SSD’s internal parallelism is not utilized.

In FISHSTORE, we use adaptive prefetching to detect lo-
cality on the hash chain and actively prefetch more data
on the log to reduce random I/Os. Fig. 9 shows how this
technique works. When the index scan hit a record on disk,
it checks how many bytes are between the current record
and the previous record in the hash chain. If they are close
enough, we speculatively retrieve more bytes before the pre-
vious record when issuing the next I/O. In other words, if
F1sHSTORE witnesses locality on the log, it issues a larger
I/O request hoping that it will cover more qualified records,
thereby reducing the total number of I/O issued. When the
index scan is already in speculation and we witness more
locality on the log, we can speculate more aggressively by
issuing even larger I/0 requests. When we notice a loss of
locality, we fall back to random I/Os and repeat the process.

The core idea of adaptive prefetching is to trade-off disk
bandwidth to reduce the number of I/Os issued. To ensure
the effectiveness of our solution, we develop a mathematical
model to conduct this trade-off. There are two parameters to
configure adaptive prefetching, namely, the threshold to de-
termine locality and the size of prefetching. Generally, we are
willing to sacrifice the following amount of disk bandwidth
in bytes to save a single random I/O:

® = (costgyscall + latency,, 4) X throughpu’tseq

In the formula above, we calculate the time cost of a ran-
dom I/O and figure out how many bytes in sequential I/O
will cause the same cost. Note that the number of bytes be-
tween two entries (i.e., key pointers) on the hash chain also
includes the length of a record. As the I/O bandwidth for re-
trieving records is not wasted, FISHSTORE sets the threshold
for adaptive prefetching to be 7 = ® + avg,.. .-



Table 1: Default Workloads for each Dataset

Dataset Field Projections Properties of Interest
Github id, actor.id, repo.id, type type == "IssuesEvent" && payload.action == "opened"
type == "PullRequestEvent" && payload.pull_request.head.repo.language == "C++"
Twitter id, user.id, in_reply_to_status_id, user.lang == "ja" && user.followers_count > 3000
in_reply_to_user_id, lang in_reply_to_screen_name = "realDonaldTrump" && possibly_sensitive == true
Twitter Simple id, in_reply_to_user_id lang == "en"
Yelp review_id, user_id, business_id, stars > 3 && useful > 5
stars useful > 10

Note that the cost of system call can be determined empir-
ically, while the latency for random I/O and throughput for
sequential I/O can be found in disk specifications. Further,
the average record size can be actively estimated by profil-
ing incoming data. The number of bytes for prefetching is
determined by record size and disk specification as well. It
should at least be larger than the average record size so that
prefetching can get at least one meaningful record. Note that
it is meaningless to retrieve blocks larger than a full disk
queue as we would not be able to extract more parallelism
from the SSD. Thus, we set several levels of speculation be-
tween average record size and the full disk queue size, where
the gap between each level is exponential. Thus, with contin-
uous locality, FISHSTORE is able to get close performance to
sequential scan in just a few steps. Note that FISHSTORE scans
are sequential, with SSD parallelism achieved using concur-
rent scan and ingestion operations. We discuss extensions
for parallelizing a single scan operation in Appendix F.

8 EVALUATION

We evaluate FISHSTORE extensively over three real-world
datasets, on both ingestion and subset retrieval performance.
We first comprehensively evaluate FISHSTORE against exist-
ing solutions and our own baselines, both when ingesting
into SSD and with in-memory ingest (avoiding the SSD bot-
tleneck). We then evaluate features such as partial parsing
and latch-free ingestion. Finally, we evaluate FISHSTORE’s
subset retrieval performance, including adaptive prefetch
scans, read/write workloads, and recurring queries.

8.1 Setup and Workloads

All experiments on FISHSTORE are carried out a Dell Pow-
erEdge R730 machine with 2.3GHz 36-core Intel Xeon Gold
6140 CPUs (we use one socket), running Windows Server
2016. The machine has 512GB of RAM and a 3.2TB FusionIO
NVMe SSD that supports around 2GB/sec sequential writes.

Systems. We implemented F1SHSTORE in C++ by modifying
our open-source FASTER, and used it with unmodified Mison
for parsing. In order to understand performance and bottle-
necks, we also implemented alternative solutions by combin-
ing different storage systems, index types, and parsers:
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Figure 10: Comparison with Existing Solutions

FASTER-RJ uses RapidJSON [14] to parse the primary key
and ingest using this key into the FASTER key-value store.
e RDB-RJ and RDB-Mison take RapidJSON and Mison respec-
tively to parse only the primary key, and ingest them into
RocksDB, which uses an LSM tree designed to handle
write-heavy workloads.

RDB-Mison++ uses RocksDB as a secondary index to index
dynamic PSFs using FISHSTORE’s log as primary storage,
i.e., we replace FISHSTORE’s hash index with RocksDB.
FishStore-RJ replaces Mison with RapidJSON in FisHu-
STORE, to measure performance without a partial parser.

We configured RocksDB (version 5.17.2) to use level-style
compaction with 16 compaction threads, and a 1GB write-
buffer size (same as the FISHSTORE hash table size). We per-
form non-synchronous operations on RocksDB, with the
WAL disabled. We also tried several prototype systems im-
plementing better LSM trees, including Dostoevsky [28],
TRIAD [19], and PebblesDB [44]. We found that even though
they achieve slightly better performance compared to vanilla
RocksDB on a single ingestion thread, they do not scale well
on multiple threads. This led to much lower performance in
our evaluations. Therefore, we omit these results and only
compare against RocksDB-based systems in this paper.

Datasets. We pick three representative real-world JSON

datasets (CSV data experiments are covered in Appendix G):

o Github: The Github timeline dataset [11] collected in Sep-
tember 2018 includes 18 million records and is 49GB in file
size. It features complex JSON structure with a moderate
average record size (~ 3KB).
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e Twitter: Active 1% sample of tweets crawled through the
Twitter API in three days, which is 52GB and contains
9.3 million tweets. Records in this dataset are structurally
complex with large average record size (> 5KB) as well.

e Yelp: Publicly available Yelp user review data [15]. We
duplicate the dataset 8 times to create a 36GB dataset that
contains 48 million records. Reviews in this dataset are
very small (< 1KB) and have a fixed schema.

Note that each dataset will cause unique behaviors in data
ingestion due to the complexity and size of their records.
Moreover, people may care about different properties of these
dataset in real world applications. In our experiments, we
register some field projections and property of interest on
each dataset as our default workloads shown by Table 1.

Default Parameters. Unless specified, all evaluations are
conducted on 8 threads with a 2GB memory budget, to model
a typical lean CPU, fast storage configuration. We preload
input datasets into memory for all experiments.

8.2 Compare with Existing Solutions

Before comparing against the baselines mentioned in Sec 8.1,
we tried ingesting our dataset in MongoDB [12] and As-
terixDB [4], which are open-source storage systems that
can ingest schema-free semi-structured data. For the Github
dataset, both MongoDB and AsterixDB take more than half
an hour to ingest without building any index. This suggests a
throughput around 30MB/s which is around 60X lower than
the default setting of FISHSTORE, which saturates disk band-
width. The main reason for the low performance is that these
systems spend significant time reorganizing records into
their own binary format. Another option is to load the data
into formats such as Parquet. We tried loading the Github
dataset into Parquet with 8 cores using Apache Spark 2.3.1.
This procedure took around 10 minutes; a load throughput of
less than 90MB/s, more than 20X slower than F1ISHSTORE. Fur-
thermore, these results represent offline loading; we expect a
lower throughput when creating Parquet batches on-the-fly,
as schema inference would be required on every batch.

To study how different storage layers and parsers influ-
ence performance, we compare the ingestion throughput of
F1suSTORE with FASTER-RJ, RDB-RJ, and RDB-Mison. For a

fair comparison, we let FISHSTORE also only build the in-
dex on one key field projection PSF. We show results on
Github and Yelp, and omit Twitter as it is similar to Github.
As shown by Fig. 10, FISHSTORE outperforms all other solu-
tions and saturates disk bandwidth with only 8 cores on both
datasets, due to the removal of both indexing and parsing
bottlenecks. Note that the performance of RDB-Mison drops
after 8 threads on Github because the record size of Github
is bigger, triggering compaction more aggressively when
data arrives fast. In addition, for Yelp dataset, FASTER-RJ’s
performance drops at 16 threads because FASTER can load
data much faster than RocksDB as a key-value store. This
forces RapidJSON to parse many short records in a short
period of time, which leads to dense memory allocation and
performance deterioration.

8.3 Ingestion Performance

We now evaluate ingestion performance, comparing FIsH-
STORE against two alternatives, namely RDB-Mison++ and
Fishstore-RJ, to show how a full parser or a slower index
can significantly impact ingestion performance.

Ingestion Scalability (In-Memory). To understand how
F1sHSTORE and other solutions perform without the bottle-
neck of disk, we first conduct experiments that use a null
device, which simply discards data to eliminate the disk band-
width bottleneck. Fig. 11 shows how the solutions scale with
an increasing number of worker threads during ingestion.
Both RDB-Mison++and FishStore-RJ do not scale as well
as FISHSTORE, but for different reasons. When the records
are small, with a reasonable number of registered properties,
RDB-Mison++ does scale well as there is much more index
update pressure in the system. Fig. 11(d) shows an exam-
ple of this case, RDB-Mison++ only gets 9.1% of FISHSTORE’s
throughput with 32 threads. In contrast, FishStore-RJ does
not scale for two reasons: (1) compared to Mison, RapidJSON
has to parse the whole record; (2) when parsing many records
with multiple threads, RapidJSON issues excessive memory
allocations for document structure construction, creating
a scalability bottleneck. For example, FISHSTORE achieves
around 7.7 higher throughput than FishStore-RJ on Sim-
ple Twitter workload with 32 cores (shown in Fig. 11(c)),
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mainly due to better partial parsing. On the other hand, as
we observed in Fig. 11(a), 11(c), and 11(d), the throughput of
FishStore-RJ drops after a certain number of threads due
to the second reason mentioned above.

Overall, FISHSTORE is faster than the alternatives and gets
more than 16.5GB/s throughput with 32 threads with Twitter
Simple, showing its potential on faster storage devices. We
also see the gap between FISHSTORE and its alternatives
growing larger, which reflects its better scalability.

Ingestion Scalability (Disk). We repeat the experiment
above, but enabling our SSD as storage for the ingested data.
Fig. 12 shows how different solutions scales against num-
ber of threads (i.e., ingestion workers) when ingesting onto
disk. As shown in the figure, FISHSTORE hits the SSD band-
width with less than 8 cores on all the workloads, while both
RDB-Mison++ and FishStore-RJ do not scale well for the
same reasons discussed earlier.

Ingestion CPU Breakdown. To better understand inges-
tion performance, we break down the CPU time of FisH-
STORE, RDB-Mison++ and FishStore-RJ running all four
workloads with 8 threads in memory. In Fig. 13, we normalize
the total CPU time of all solutions on each workload by the
total CPU time of FISHSTORE on the corresponding workload.
This provides us an intuitive comparison of different parts of
overheads across different solutions. We see that FISHSTORE
combines benefits from a faster parser and index. On Github
and Twitter workloads, RDB-Mison++and FishStore-RJ are
slow because of different reasons. RDB-Mison++ incurs sig-
nificant overhead in updating its index managed by RocksDB,
while FishStore-RJ struggles with parsing complex JSON
documents. In Simple Twitter workload, the performance of
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RDB-Mison++ looks decent simply because of a fewer num-
ber of registered properties, which leads to low indexing
pressure. For Yelp workload, as its records are pretty sim-
ple and short, FishStore-RJ does not introduce too much
overhead in parsing. However, it spends a non-trivial time in
memory allocations for building its internal document struc-
ture and evaluating PSFs as it need to scan the document
twice to find the location of a parsed out field.

Effect of # PSFs. Three basic factors affect FISHSTORE’s
throughput: field parsing cost, PSF evaluation cost, and in-
dexing cost. All these factors are influenced by the number
of PSFs registered. We perform two sets of experiments to
show this effect.

We first register several field projection PSFs, varying the
number of them, which increases all three costs, and partic-
ularly the parsing cost. As shown in Fig. 14, the ingestion
throughput of FIsuSTORE and RDB-Mison++ deteriorates as
more field are parsed, while FishStore-RJ’s performance is
not influenced because RapidJSON always parses the entire
document. The storage cost of these PSFs (not shown) is
similar, following a linear trend up to 1%.

(b) Storage Cost
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In the second set of experiments, we aim to show how PSF
evaluation and indexing costs alone influence FisHSTORE. In
particular, we register a varying number of PSFs over the
Twitter dataset: PSF 1-250 are predicate-based PSFs that in-
dex disjoint value ranges over the field “user.statuses_count’
and PSF 251-500 are similar PSFs but over overlapping ranges.
Fig. 15 shows that the ingestion speed drops as the number
of PSFs grows, due to higher PSF evaluation and indexing
cost. Note that RDB-Mison++ is only 15%-35% slower than
F1SHSTORE, as each PSF only matches a small fraction of
records, leading to much lower index pressure. We also ob-
serve that the storage cost is very low at around 0.5%, even
with 500 PSFs registered. The storage cost of a predicate-
based PSF depends on how many records it matches. As
shown in Fig. 15(b), the overlapping ranges of PSFs (PSF
251 to 500) have a slightly higher storage cost than disjoint
ranges (PSF 1 to 250) due to higher selectivity.

In practice, our workloads are expected to contain a few
field projections and many predicates matching small subsets,
which will not incur a high storage cost. For instance, the
default Twitter workload only causes around 1.35% storage
overhead. As a result, its influence on full scan is negligible,
and we omit these results for brevity.

In addition to the results above, we conduct experiments
to show the effectiveness of our hash index update algorithm
and CSV ingestion support, in Appendix G.

8.4 Subset Retrieval Performance

In this section, we evaluate subset retrieval using FISHSTORE
and RDB-Mison++. We also show FISHSTORE’s performance
over ingest/scan mixed workloads and recurring queries.

Adaptive Prefetching. Fig. 16(a) shows the performance of
full scan and index scan with and without adaptive prefetch-
ing on different datasets. Specifically, the query for Github
dataset is ‘type == PushEvent’ that touches around 50%
of Github records; that for Twitter dataset is ‘user.lang =
ja && user.follower_count > 3000’ which has a selec-
tivity around 1%; query for Yelp data is ‘stars > 3 && useful
> 5° selecting 2% of all records. We see that RDB-Mison++
is similar to scan without adaptive prefetching. Prefetching
helps us to get the best of both worlds: issue random I/Os
for selective queries while achieving no worse performance

on non-selective ones. This method is particularly effective
for non-selective queries such as the Github query, which
helps F1sHSTORE achieve a 10X speed up compared to raw
index scan without adaptive prefetching.

Effect of Selectivity. When the request is non-selective, ex-
ploring the hash chain through random I/Os may be slower
than a full scan. Fig. 16(b) shows the result of issuing queries
with different selectivity on Github data. Full scan is not
influenced at all as expected, while index scan without adap-
tive prefetching and RDB-Mison++ slow down as selectiv-
ity grows and finally become slower than doing a full scan.
Meanwhile, index scan with adaptive prefetching mediates
the cost of random I/Os and tries replacing them with larger
and continuous I/Os, and avoids being slower than full scans.

Effects of Memory Budget. With more memory, FISHSTORE
can cache more recent data in memory for better scan per-
formance. Fig. 16(c) shows the execution time of ‘type ==
PushEvent’ on Github dataset by varying FISHSTORE’s mem-
ory budget. We see that index scan with and without adaptive
prefetching benefit from having more memory. In contrast,
a full scan does not benefit much because it also requires
field parsing and PSF evaluation over each record, since it
was not done during ingestion time. RDB-Mison++ degrades
slightly with larger memory due to its more expensive index.

Ingest/Scan Mixed Workload. We emulate an application
that performs short scans (e.g., point lookup and hash join)
while ingesting data. We generate a workload that combines
the ingestion of Github dataset and point lookups on field
‘actor.id’. As shown in Fig. 16(d), FISHSTORE achieves
higher throughput as the percentage of scans grows, because
short scans are cheaper with no parsing or index update.
RDB-Mison++ achieves lower throughput, particularly for
reads, due to the more complex and secondary index.

Recurring Query. Another interesting application is that
user may issue recurring queries against the ingested data.
Registering a PSF can accelerate future subset retrievals for
the same query on newer data. To evaluate this scenario,
we issue a sequence of requests asking for the number of
open issues in the past hour, against an active Github data
ingestion session. After the second query execution, we reg-
ister the index on property ‘type == "IssuesEvent" &&



payload.action = "opened"’. As shown by Fig. 16(e), sub-
set retrieval performance improves over time as FISHSTORE
has increasingly more data within the sliding window be-
ing indexed, requiring a full scan of lesser data. When the
window is completely inside index range, the performance
becomes stable and much better than previous attempts.

In Appendix G, we evaluate the generality of adaptive
prefetching by studying hash chain locality in real datasets.
Subset retrieval in systems such as MongoDB, AsterixDB,
and Parquet is also covered in Appendix G..

9 RELATED WORK

Data Formats for Analysis. Today’s big data systems are
capable of accessing data in many formats, which support
complex structures such as arrays and nested objects. These
data formats can be categorized into three classes: row-
oriented text formats (e.g., CSV, JSON), row-oriented bi-
nary formats (e.g., Google Protocol Buffers [13], Apache
Thrift [10], Apache Avro [5]), and columnar binary formats
(e.g., Apache Parquet [9], Apache ORC [8]). FISHSTORE ex-
poses a generic parser interface, but using FISHSTORE with
other formats is an interesting direction for future work.

Parsing for Data Analysis. Many techniques [21, 36, 40,
42] have been developed to accelerate data parsing for anal-
ysis. For instance, Mithlbauer et al. [40] exploit SIMD par-
allelism to accelerate CSV parsing and data deserialization.
Mison [36] is a fast JSON parser designed for data analytics
applications. It allows applications (e.g., analytical engines)
to push down projections and filters of analytical queries
into the parser. Sparser [42] is a parsing technique applicable
to common formats such as CSV, JSON, and Avro that can
filter records even before parsing them, by searching the raw
byte stream. These parsing techniques are complementary
to F1sHSTORE, which can benefit from these innovations.

Query Processing over Raw Data. Our work is closely
related to recent work on processing raw data in database
systems [16, 17, 20, 26, 32, 40]. NoDB [17, 32] is seminal
work that builds structural indices on raw CSV files to locate
requested fields. Structural indices differ from FISHSTORE’s
index in lacking the ability to locate all records that match
certain criteria. Amazon Athena [1] and Amazon Redshift
Spectrum [3] enable users to query raw data in Amazon S3
using standard SQL. Apache Spark [50] and Apache Drill [6]
support access to raw data. Compared to these systems, F1sH-
STORE takes a further step towards fast query processing: it
builds hash indices on demand to quickly locate records in
raw data that meet certain conditions.

Storage and Indexing. Systems such as Masstree [39, 49]
are pure in-memory indices and cannot be used as a storage
layer. Cassandra [29], RocksDB [41, 48], and Bw-Tree [35]

are key-value stores that can handle data larger than mem-
ory, but expose an ingestion bottleneck. DocumentDB [47]
parses raw data to create a secondary range index over ev-
ery (nested) attribute and prefix during ingestion. Recently,
plenty of improvements [19, 23, 27, 28, 43-45, 51] have been
made to LSM-tree-based key-value stores, to reduce write am-
plification and improve scan performance. However, a tree-
based index still suffers from issues for our target workloads,
as evaluated in this paper and discussed in Appendix B. Sys-
tems such as AsterixDB [4] and MongoDB [12] can index and
store data, but face bottlenecks due to data re-organization.
Smooth Scan [22] enables adaptive access path selection
and online reoptimization. Adaptive prefetching differs from
Smooth Scan as it operates on a log collocating index entries
with data records, which provides a simpler cost model and
a unified scan pattern. Crescando [30] adopts a scan-only
architecture using shared scans to achieve predictable query
performance on unpredictable workloads. The tradeoff be-
tween scan and index has been examined previously [25, 34];
we provide an adaptive solution for hash chained records
guided by a cost model. Further, existing research [46, 52] per-
forms prefetching using multi-threading and SIMD, which
applies between CPU cache and main memory but may not
work well on disks.

Streaming and Analytics. Streaming ETL over raw data is
supported by systems such as Apache Spark [50], Apache
Flink [7], Google Cloud Dataflow [31], and Amazon Kine-
sis [2]. DataCell [37, 38] and Spark Streaming [18] support
streaming and ad-hoc queries over relational data. FISHSTORE
focuses on fast ingestion of flexible-schema data while in-
dexing subsets of data on demand, and can serve as a storage
layer for streaming pipelines.

10 CONCLUSION

Huge volumes of structured and unstructured data are being
ingested into the cloud from a variety of data sources. Tra-
ditionally, data is either ingested into storage in raw form,
indexed ad-hoc using range indices, or cooked into columnar
formats. We find that none of these solutions can ingest data
at high throughput with low CPU cost, due to the bottle-
necks of parsing and indexing. We build on recent advances
in parsing and indexing techniques to propose FISHSTORE,
a concurrent storage layer for data with flexible schema,
based on the notion of hash indexing dynamically registered
predicated subset functions. Our detailed evaluation on real
datasets and query workloads shows that FISHSTORE can
handle a wide range of applications and can ingest, index,
and retrieve data at an order of magnitude lower cost than
state-of-the-art alternatives used widely today.
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A INDEXING HISTORICAL DATA AND
SMALL RECORDS

The subset hash index built by FisHSTORE is collocated with
the physical record layout, so as to avoid the indirection
between index entries and the actual data. This design is
particularly suitable for an ingestion system because it only
builds newly registered PSF indices on data ingested later. In-
terestingly, our design does not preclude building secondary
indices over historical data. Thanks to the universal address
space constructed on the log, any index structure can be built
over data ingested by FISHSTORE, similar to the design of
RDB-Mison++ described in Sec. 8.1. Specifically, if we also
choose our subset hash index as the secondary index, we
simply need to replace the payload region in the record lay-
out with a pointer to the raw data on FISHSTORE’s record log.
This design is also applicable in case FISHSTORE is used for
ingesting small binary records with many matching PSFs per
record, where storing index pointers in the record header
may incur overhead.

B HASH- VS. TREE-BASED INDICES

In this section, we discuss our design choice of using a hash
index instead of a tree index (such as B-Tree or LSM-Tree)
adopted by most databases. The biggest advantage a tree-
structured index provides is the ability to answer arbitrary
range queries. However, after careful discussions with ap-
plication developers and extensive evaluations, we chose a
hash-based solution due to the following reasons:

(1) A tree-structured index has to store keys in index entry
and internal nodes for later navigation. As the amount of
indexed data and properties grows, the index size also grows
rapidly, making it impossible to be completely in-memory.
After spilling onto disk, the performance of insertion and
queries over the index drops as well. In contrast, as the hash
table adopted by FisHSTORE does not store keys in its hash
buckets, its size is not related to data size or number of
properties, making it concise in most cases.

(2) The index entries in a tree-structured index are sorted
and clustered, which forces it to add an indirection between
the index entry and data records. Recall that a record can be
referred to by multiple index entries as it may has more than
one properties. However, since these index entries represent
different properties, they will not be continuous at the leaf
level. Duplicating the record next to its index entries is too
expensive. Hence, data has to be stored separately and all

index entries have to carry a pointer to the data. As index en-
tries may themselves have spilled to disk, retrieving records
through the index may cause an additional random I/O.

(3) With the parsing overhead eliminated, the bottleneck
shifts elsewhere. Although tree-structured indices provide
more flexibility for queries, their performance for inserting
a new entry is much slower than a hash table. According to
our evaluation, the throughput of a hash table insertion is
significantly higher than that of a tree insertion.

(4) FisuSTORE is designed to be highly concurrent and write
heavy. Common tree indices for such workloads cause write
amplification during log compaction, which introduces over-
head and wastes significant disk bandwidth [44]. As a result,
the ingestion throughput is limited.

(5) Combined with post-processing, the subset hash index is
also able to answer some range queries. If the range is known,
it can be registered as a PSF to aid future retrievals. Further,
users can build indices over a bucketing function. Then, a
range query can be answered by retrieving all records in the
covering buckets, with post-filtering.

To evaluate the ingestion performance of FIsHSTORE when
using a tree-structured index, we built a version of Fisn-
STORE using RocksDB as its underlying index. Our detailed
evaluation in Sec 8 verifies that its performance is signifi-
cantly worse than the original FISHSTORE.

C CONCURRENT LOG MAINTENANCE

Since FISHSTORE supports data larger than memory, Fisu-
STORE’s log spans across main memory and disk. To facilitate
data access on the log, FISHSTORE creates a single logical ad-
dress space over the log. Specifically, we assign the log a
continuous address space starting from 0. Record allocations
happen at the tail of the hybrid log, which is mapped to a
circular buffer in main memory. When a page is no longer be-
ing updated by any ingestion thread (this is identified using
epoch protection), it is immutable and flushed to storage.

The in-memory buffer is sized based on available memory;
a larger buffer allows more queries to find records in main
memory, and benefits from temporal locality of record access
by queries. FISHSTORE maintains a head offset indicating the
boundary between disk and main memory, and a tail offset
pointing to the next free address. As the tail moves forward
on the circular buffer, epoch protection is used to prevent
it from overwriting the head, and guarantees the safety of
memory access in the presence of concurrent readers (scan
queries). To elaborate, an update of the head offset is not con-
sidered safe (in terms of reclaiming the corresponding region
of the circular buffer), until all threads have acknowledged
it by refreshing their epochs. Reader threads periodically
refresh their epochs during a scan so that writers are not
blocked from advancing the tail.



Algorithm 1: Hash Chain Update Algorithm

Input: Hash signature h of a property
key pointer to swap in cur_kpt
Result: Swap cur_kpt into the hash chain of A

1 cur_addr « address of cur_kpt
2 entry « find_hash_entry(h)
3 new_entry < update entry.addr to cur_addr
4 while ! (success « entry.CAS(entry, new_entry)) do
5 if entry.addr < cur_addr then
6 | cur_kpt.prev_addr « entry.addr
7 else
8 ‘ break
9 end
10 end
11 if !success then
12 kpt « get_kpt(entry.addr)
13 repeat
14 while kpt.prev_addr > cur_addr do
15 | kpt < get_kpt(kpt.prev_addr)
16 end
17 cur_kpt.prev_addr « kpt.prev_addr
18 new_kpt «— update kpt.prev_addr to cur_addr
19 until kpt. CAS(kpt, new_kpt);
20 end

D HASH CHAIN UPDATE ALGORITHM

Algorithm 1 summarizes the hash chain update algorithm.
As we can see, no successful CAS creates a forward link in
the hash chain. Furthermore, the algorithm will always ter-
minate since we can only fall from the easy case into the hard
case, and the swapping point will always head to a higher
address. A nice property of this algorithm is that it breaks the
contention and moves it somewhere else as soon as we real-
ize that the invariant (no forward hash link) is going to break.
As a result, even on very high contention, the algorithm is
able to break a single contending point to different places
on the hash chain. In practice, this method works extremely
well and survives contending millions of records on a single
chain with 32 threads. Moreover, since we can use the tech-
nique independently on all the key pointers of a record, there
is no need to do any reallocation upon CAS failures. Note
that a newly successful insertion on the hash chain will only
happen after  due to the hash chain invariants. As a result,
in all three cases, CAS can only happen between A and P.
Combining with the fact that Algorithm 1 will always make
progress, we can conclude that it is wait-free. Suppose there
are k; key pointers between A and % in case 1, and there are
k; key pointers if case 1 fails and falls into case 2 and 3. In
the worst case, Algorithm 1 will terminate in O(k; + k).

E FISHSTORE CHECKPOINTING

F1sHSTORE automatically persists data from the in-memory
circular buffer onto disk. Thus, we can provide a periodic
line of persistence to each user, allowing them to continue
ingestion after the system crashes. Specifically, we periodi-
cally report a batch number and an offset to each ingestion
worker, such that all records up to the offset in the batch
have been persisted onto disk.

However, after a crash, FIsuSTORE will lose its in-memory
hash table. As a results, FISHSTORE needs to scan through
the log and rebuild its hash table during recovery, which can
take time. To address this issue, FISHSTORE allows users to
take a periodic “fuzzy checkpoint” of the hash table, similar
to the technique used in FASTER [24]. To obtain a fuzzy
checkpoint, FISHSTORE simply writes all hash index pages
using asynchronous I/Os. Since the hash bucket entries are
updated only with atomic CAS instructions, the hash in-
dex is always physically consistent. With the help of index
checkpointing, recovery time can be reduced by replaying a
smaller suffix of the log. Currently, FISHSTORE uses a single
thread for recovery. It is possible to parallelize recovery on
multiple threads, or mask recovery time using active replicas;
these extensions are left as future work.

F PARALLEL SCANS

The adaptive scan described in Sec. 7.2 does not exploit SSD
parallelism as it follows a chain of hash pointers. This is
suitable for our target applications, where SSD parallelism is
achieved using concurrent scan and ingestion operations. We
may extend the system to parallelize scans in several ways.
First, when adaptive scan chooses to scan pages, we may
issue multiple I/Os and process pages in parallel. For hash
chain traversals, we may introduce finger pointers, additional
pointers at the root entry or intermediate records in the
hash chain that point to different segments of the hash chain.
This incurs additional overhead, but may be used to traverse
different sections of the hash chain in parallel during the
scan. Alternatively, we may introduce multiple hash entries
for the same PSF to traverse in parallel, for example, by
concatenating PSF values with a fixed number of constants.

G MORE EVALUATION

Subset Retrieval in Other Systems. As is well-known, Par-
quet is highly optimized for analytical queries on offline data
involving a few columns. In contrast, FISHSTORE is designed
for a different workload of fast ingestion of huge data vol-
umes with dynamic subset retrieval support. The raw data
(or its more refined predicated subsets) may eventually mi-
grate from FIsHSTORE to formats such as Parquet for offline
analytics.

For instance, we found that counting the number of push
events in the Github dataset takes only 1.4s with Parquet
used via Spark. On the other hand, apart from the slow in-
gestion speed (Sec. 8.2), we found that retrieving records
(either all or a non-trivial subset of fields) is slower, primar-
ily due to the higher record reconstruction cost. For example,
it takes Parquet more than 286s to retrieve all Github records
matching filter ‘type == PushEvent’. Finally, we note that
Parquet is also not suitable for highly selective queries such
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as point lookups, which hash indices are optimized for. For
instance, FISHSTORE takes 30ms to scan 60 records, whereas
Parquet takes more than 1s for the same workload. Finally,
since we configured MongoDB and AsterixDB for ingestion,
we do not build an index. Therefore, subset retrieval falls
back to a full scan and takes a long time.

CAS Technique. FIsuSTORE’s CAS technique of Alg. 1 avoids
space and write amplification. Fig. 17 shows its effectiveness
by comparing FISHSTORE against another version of Fisu-
STORE that uses the CAS technique of unmodified FASTER on
the Yelp workload. As Fig. 17(a) shows, the original version
suffers from significant throughput drop after 8 threads. This
is because its index update technique reallocates the record
on the log if any of the CAS operations fail during insert. As
the number of threads grows, the higher contention results
in failed CAS operations and heavy write amplification (as
shown by Fig. 17(b)), hurting throughput.

CSV Ingestion. Recall that FISHSTORE exposes a generic
parser interface that supports batched parsing of the speci-
fied fields of interest. In our examples and evaluations, we
focused on JSON as our major supported data type. To verify
F1sHSTORE’s ability to support other data types, we imple-
mented a CSV parser and plugged it into FISHSTORE. We
evaluate FISHSTORE against a CSV copy of the Yelp data used
in Sec. 8. Fig. 18(a) shows that data ingestion performance in
memory grows linearly with the number of threads. Specifi-
cally, as with JSON, we hit the 2GB/sec disk bandwidth limit
with 8 threads and achieve throughput of up to 5.4GB/sec
with 32 cores. Finally, as shown in Fig. 18(b), the adaptive
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prefetching has effectiveness similar to the trend of its JSON
counterpart, which was covered in Sec. 8.4.

Adaptive Prefetching Case Study. To demonstrate the ef-
fectiveness of adaptive prefetching and the generality of tem-
poral locality in real world data sets, we plot how records
are scattered along the log for two PSF properties on Github
Dataset. Fig. 19(a) shows how the hash link gap distribute
along address space for query type=="IssueEvents" &&
action=="open". As we can see, long and short gaps inter-
leave along the log for this query. Specifically, long gaps can
be more than 1MB skipping through thousands of records,
short ones can link two continuous records. Hence, adaptive
prefetching is effective to switch between random I/O and
sequential scan back and forth to optimize scan performance.

Fig. 19(b) shows query type=="PushEvent" where records
on the hash chain are dense on the log with occasional long
jumps. Hence, FisuSToRe will first converge to sequential
scan, fall back to random IO going over the long gap, and
then converge to sequential scan again.

Checkpoint and Recovery. Fig. 20 shows the performance
of index checkpointing and crash recovery, described in Ap-
pendix E, and how they are influenced by hash table size
and checkpoint interval. As shown in Fig. 20(a), the recovery
time grows linearly with the checkpoint interval, since F1su-
STORE has to load longer suffixes of the log to rebuild its hash
table. When the hash table size grows, both checkpoint and
recovery time grow as FISHSTORE need to dump or load the
whole hash table to or from disk. As described earlier, recov-
ery times may also be controlled by parallelizing recovery
or masking it using active replicas.
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