
Appears in the proceedings of the
8th Annual International Symposium on High-Performance Computer Architecture (HPCA-8)

Cambridge, MA, February 2-6, 2002

m
ing
h.
n-
-
his
es
th.
ve
tor

e
lt.

e
ge
n,
ve

sir-
nce
0],
u-
tion
ble
le,
of

Bandwidth Adaptive Snooping

Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood
Computer Sciences Department

University of Wisconsin-Madison
{milo, sorin, markhill, david}@cs.wisc.edu

http://www.cs.wisc.edu/multifacet/
Abstract
This paper advocates that cache coherence protocols use

a bandwidth adaptive approach to adjust to varied system
configurations (e.g., number of processors) and workload
behaviors. We proposeBandwidth Adaptive Snooping
Hybrid (BASH), a hybrid protocol that ranges from behav-
ing like snooping (by broadcasting requests) when excess
bandwidth is available to behaving like a directory protocol
(by unicasting requests) when bandwidth is limited.BASH
adapts dynamically by probabilistically deciding to broad-
cast or unicast on a per request basis using a local estimate
of recent interconnection network utilization. Simulations of
a microbenchmark and commercial and scientific workloads
show thatBASH robustly performs as well or better than the
best of snooping and directory protocols as available band-
width is varied. By mixing broadcasts and unicasts,BASH
outperforms both snooping and directory protocols in the
mid-range where a static choice of either is inefficient.

1 Introduction
Snooping and directory protocols are the two dominant

classes of cache coherence protocols for hardware shared
memory multiprocessors. In a snooping system, a processor
broadcasts a request for a block to all nodes in the system to
find the owner (which could be memory) directly. In a direc-
tory protocol, a processor unicasts a request to the home
directory for the block, the directory forwards the request to
the owner (trivial when the directory is the owner), and the
owner responds to the requestor. Thus, snooping protocols
can achieve lower latencies than directory protocols on shar-
ing misses (a.k.a., cache-to-cache transfers or dirty misses)
by avoiding the indirections incurred by directories.

By broadcasting to avoid indirections for sharing misses,
snooping can outperform directories when bandwidth is
plentiful, but directories outperform snooping when band-
width is limited. In today’s commercial workloads, sharing
misses comprise a significant fraction of level two cache
misses and correspondingly impact performance [3, 18].

Martin et al. [23] showed that snooping can outperfor
directories on a medium size (16 processor) system runn
commercial workloads, at the cost of additional bandwidt
In Figure 1, we plot performance versus available interco
nection network bandwidth for a simple locking micro
benchmark on 64 processors (described in Section 4). T
graph reinforces the intuition that the relative performanc
of snooping and directories depend on available bandwid
The point at which increasing bandwidth does not impro
performance occurs at a bandwidth much greater (by a fac
of 5) for snooping than for directories.

Designing a single protocol to provide high performanc
for many system configurations and workloads is difficu
Hennessy writes [14], “[W]e don’t have a coherency schem
that does well under all these situations: from small to lar
processor counts, different levels of [software] optimizatio
and differing cache sizes.” We advocate an adapti
approach to address this challenge.

There are two reasons why an adaptive scheme is de
able. First, due to the trend towards integrating the cohere
protocol logic and the processor on the same die [7, 12, 3
a single protocol must suffice for multiple hardware config
rations (processor counts, cache sizes, and interconnec
networks). If the microprocessor is to be used in a scala
system, the protocol must also be scalable. For examp
since Alpha 21364 [12] systems can scale to hundreds

This work is supported in part by the National Science Foundation with
grants EIA-9971256, CDA-9623632, and CCR-0105721, an IBM Graduate
Fellowship (Martin), an Intel Graduate Fellowship (Sorin), two Wisconsin
Romnes Fellowships (Hill and Wood), and donations from Compaq Com-
puter Corporation, IBM, Intel, and Sun Microsystems.

100 1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Figure 1. Performance vs. available bandwidth for a
microbenchmark on 64 processors

-

d
es-
-

ly
rol
ges
r-
in
ng
o
e
nd
due

le
ust
rts:
e
or

e
r-
t
re-
n
ost
le,

3
ti-
ts
y

processors, a directory protocol is currently the only option.
However, many scalable system designs are used for smaller
systems that could be better served by a snooping protocol.
Even the vast majority of scalable systems sold are systems
of moderate size. For example, a recent essay [24] estimated
that, of the 30,000 Origin 200/2000 [20] systems shipped,
less than 10 systems contained 256 or more processors
(~0.03%), and less than 250 of the systems had 128 proces-
sors or more (~1%).

Second, statically choosing between a directory protocol
and a snooping protocol is not desirable due to the varying
behaviors of different workloads and the time-varying
behavior within a workload. Our results show that for a given
system size and configuration, some workloads perform bet-
ter with snooping while other workloads are better served by
a directory protocol. Further, a given workload’s demand on
system bandwidth varies dynamically over time. For exam-
ple, different phases of behavior for a multiprocessor data-
base workload have been observed with periods on the order
of minutes [25]. During a phase of high cache miss rate, a
broadcast request in a snooping protocol could further con-
gest the system.

For these two reasons, an adaptive hybrid protocol that
provides robust performance is preferable to a static choice
of either snooping or directories. Our contribution is an
adaptive mechanism (Section 2) and a hybrid protocol
(Section 3) that leverages this mechanism to perform like
snooping (by broadcasting requests) if bandwidth is plentiful
and perform like a directory protocol (by unicasting
requests) if bandwidth is limited. Our protocol,bandwidth
adaptive snooping hybrid (BASH), adapts dynamically to the
available bandwidth to provide robust performance. Using a
microbenchmark (shown in Figure 1 and further explored in
Section 4) and commercial workloads (Section 5), we show
that the performance ofBASH tracks that of the directory
protocol in the limited bandwidth case and tracks that of
snooping in the plentiful bandwidth case. Moreover, in the
mid-range where the performances of snooping and directo-
ries are similar,BASH outperforms both protocols.

2 A Bandwidth Adaptive Mechanism
In this section, we describe the mechanism each processor

uses to decide dynamically whether a request should be
broadcast or unicast.

2.1 Goal and Approach
BASH’s goal is to minimize average miss latency. Given

infinite bandwidth, broadcasting all requests would achieve
this goal by avoiding all indirections for sharing misses.
However, the finite bandwidth of interconnection networks
can lead to congestion and queuing delays that outweigh the
benefit of avoiding indirection. Nevertheless, mean queuing
delay only dominates when the interconnect is highly uti-
lized. Figure 2 illustrates this trade-off with a simple queuing

network. Above the “knee” in the curve, increasing utiliza
tion dramatically increases response time.

The mechanism we propose forBASHuses feedback to
keep the interconnect utilization below this critical level an
thus mitigate queuing delays. Our mechanism uses a proc
sor-local estimate of interconnect utilization to keep utiliza
tion below a pre-specified threshold by dynamical
adjusting the probability of broadcasting. Feedback cont
theory suggests that the mechanism should adapt to chan
in interconnect congestion, but not so quickly that it ove
shoots and leads to oscillation [19]. As described
Section 2.2, our mechanism avoids oscillation by adapti
relatively slowly and using a probabilistic mechanism t
decide whether or not to broadcast. In initial experiments, w
tried a simpler mechanism that switched between always a
never broadcasting, and we observed unstable behavior
to oscillation between these two extremes.

2.2 Implementation
Our bandwidth adaptive implementation uses a simp

mechanism to estimate the interconnect utilization and adj
the rate of broadcast. The mechanism consists of three pa
(1) estimating interconnect utilization, (2) adjusting th
probability of broadcasting, and (3) determining whether
not to broadcast a specific request.

First, a processor uses the utilization of its link to th
interconnection network as a local estimate of global inte
connect utilization. While this local information does no
capture certain global effects, it is easy to obtain and cor
lates strongly with global interconnect utilization due, i
part, to the broadcast nature of the requests that are m
likely to cause contention. Each processor uses a simp
signed, saturatingutilization counterto calculate if the link
utilization is above or below a static threshold. Figure
illustrates the counter’s operation assuming a target link u
lization of 75%. For each cycle, the mechanism incremen
the counter by one if the link is utilized, and decrements it b

0 20 40 60 80 100

percent utilization

0

2

4

6

8

10

12

14

av
er

ag
e

qu
eu

in
g

de
la

y

Figure 2. Average queuing delay vs. utilization for a sim-

S ~ exp(1)

N = 16

Z ~ exp(varies)

knee

queuing model
2

l,
to-
o

rm
ly-

e
g

to-
o

.3,
ue
he
er-
ed

i-
s

.4,

I
to
M

-
ume

d
and
the
d
a

on
ke

vir-
net-
re
use
igh
ork
red

on
sts.
e
lso
three otherwise. When the counter is sampled, a positive
value means that the link was used more than the threshold,
and a negative value means that the link was used less than
the threshold. The counter is reset to zero after each sample.
Since the link in Figure 3 was used 4 out of the previous 7
cycles (57%), the counter would be, as expected, negative
(4✕1 + -3✕3 = -5).

Second, an unsigned, saturatingpolicy counteraverages
the utilization information and determines the fraction of
requests that should be broadcast. Our mechanism samples
the utilization counter everyn cycles (the sampling interval),
and it increments/decrements the policy counter by one if the
utilization was greater/less than the threshold. Thus, a larger
value of the policy counter corresponds to a lower probabil-
ity of broadcast.

Finally, a given request is unicast or broadcast with a
probability proportional to the policy counter. For example,
an 8-bit policy counter with the value of 100 implies that a
request should be unicast with probability of 100/255 or
39%. For each out-going request, the processor compares the
policy counter to a randomly generated integer the same size
as the policy counter. The processor unicasts if the policy
counter is smaller than the random number, and it broadcasts
otherwise. Pseudo-random numbers can be generated easily
by a linear feedback shift register [11]. Our mechanism gen-
erates random numbers and performs the comparison to the
policy counter off the critical path, allowing the mechanism
to have negligible impact on miss latency.

Through experimentation, we selected a utilization thresh-
old of 75%, a sampling interval of 512 cycles, and a policy
counter size of 8 bits. A smaller sampling interval and policy
counter size would enable the mechanism to respond more
rapidly to different workload phases, but they would make
the mechanism more susceptible to oscillation. With these
parameters, our adaptive mechanism can change from 100%
unicast to 0% unicast (or vice versa) in 512✕255 = ~130,000
cycles in which the measured utilization is above/below the
threshold. Since the uncontended round-trip latency for an
L2 cache misses is around 125 cycles (for our target system),
the mechanism can adapt over its entire range in ~1000
cache misses.

3 A Bandwidth Adaptive Snooping Protocol
BASH, our bandwidth adaptive snooping hybrid protoco

incorporates features of both snooping and directory pro
cols. While there are different ways to combine these tw
types of protocols to synthesize a hybrid, we choose to fo
BASHfrom an aggressive snooping protocol and a recent
published directory protocol. These two protocols have som
(surprisingly) common features that we exploit in creatin
our hybrid protocol.

First, in Sections 3.1 and 3.2, we describe the two pro
cols used as the foundation of our hybrid. They will als
serve as the base cases against which we will compareBASH
for its evaluation in Sections 4 and 5. Second, in Section 3
we describe our synthesis of these two protocols. A key iss
in this synthesis is reconciling the differences between t
methods used by snooping and directories to enforce ord
ing between racing transactions. For each protocol describ
in this section, Figure 4 illustrates the operation of two typ
cal protocol transactions, so as to highlight the similaritie
and differences between the protocols. Third, in Section 3
we discuss several issues relating toBASH, including live-
lock/deadlock, scalability, complexity, and verification.

All three protocols are write-invalidate, use the MOS
states [29], allow processors to silently downgrade from S
I, support several transactions (e.g., get an S copy, get an
copy, writeback an M or O copy), and interact with the pro
cessors to support a consistency model. Our results ass
sequential consistency.

3.1 A Snooping Protocol
Traditional snooping protocols rely on a totally ordere

delivery of coherence requests to (1) enable processors
memories to agree on the next owner and (2) obviate
need for explicitly acknowledging invalidations of share
blocks. Since racing transactions are totally ordered,
snooping cache controller can make a strictly local decisi
on each transaction and infer that other nodes will ma
compatible decisions. We baseBASH on an aggressive
MOSI snooping protocol (which we refer to asSnooping)
that is loosely based on the Sun UE10000 [6].

We assume that our snooping protocol uses separate
tual networks for requests and responses. The request
work must enforce a total order, but it need not ensu
synchronous broadcast [23]. Modern snooping systems
address-interleaved hierarchical switches to achieve h
throughput for ordered broadcasts [6]. The response netw
has no ordering requirements and can use any unorde
switched interconnection network.

A processor broadcasts its requests to all other nodes
the request network, and all processors snoop all reque
The owner (potentially memory) sends data directly to th
requestor over the response network. A requestor must a
snoop its own request, which serves as amarker to indicate
its place in the total order.

Figure 3. Example operation of the utilization counter

idle

busy

utilization
counter

0

3

-3

-6

time

-3
+1

+1

-3
+1

-3
+1
3

e
to-
as
es

the
es-

tes
are
r,

stor
e

otal
s-

ory,
he

ded
it
is

ed
eir

-
-
on
et-

.

r-
ssary
A memory controller behaves much like it does in a tradi-
tional snooping protocol, except for keeping one bit of state
per block to indicate if it is the owner, similar to what was
done in the Synapse N+1 [9]. This bit of state eliminates the
need for a global owned snoop response. If memory is the
owner, it responds with data.

3.2 A Directory Protocol
Traditional directory protocols rely on unordered or, at

most, point-to-point ordered interconnection networks.
While the lack of ordering facilitates building scalable inter-
connects, it requires the protocols to use explicit acknowl-
edgment messages and transient states to enforce order
between racing transactions.

A recent directory protocol, implemented in the AlphaSer-
ver GS320 [10], uses a totally ordered multicast interconnect
to optimize the protocol and eliminate explicit acknowledg-
ments. Like Snooping, the GS320 uses a marker on the
ordered network to indicate a request’s place in the total
order. Below we describe a protocol (which we refer to as
Directory) modeled after the GS320.

Directory uses three virtual networks: an unordered
request network, a totally ordered network for requests for-
warded by the directory to processors, and an unordered net-
work for responses from processors and directories. The
totally ordered forwarded request network supports multi-
casting and, as inSnooping, eliminates the need for acknowl-
edgment messages. In the GS320, this totally ordered
interconnect is implemented as an 8-way crossbar that con-
nects to 4-processor nodes, supporting up to 32 processors.

Processors unicast all requests to the directory at memory.
The memory controller maintains a directory with state

about each block for which it is the home, including th
owner and a superset of the sharers. Like all directory pro
cols, the memory controller responds directly when it h
sufficient permissions and forwards the request when it do
not. On a direct response, the memory controller sends
data on the unordered response network and a marker m
sage on the forwarded request network. The latter indica
the request’s place in the total order. Forwarded requests
sent via the totally ordered multicast network to the owne
sharers, and requestor. The marker sent to the reque
allows it to infer where the forwarded request occurs in th
total order. The owner and sharers observing the same t
order obviates the need for explicit acknowledgement me
sages.1 Racing request messages are ordered at the direct
and they are either processed locally or forwarded on t
ordered multicast network.

When a processor responds to a request that is forwar
to it by the directory, it does not need to send an explic
acknowledgment, since the forwarded request network
totally ordered. Processors also monitor the forward
request network for the marker messages that indicate th
request’s place in the total order.

3.3 An Adaptive Hybrid Protocol
In this section, we describe how our hybrid protocol inte

gratesSnoopingandDirectory, and we then discuss a num
ber of issues that arise from the integration. The integrati
is possible because both protocols use a totally ordered n

{
Figure 4. Example operation forSnooping, Directory, andBASH with four processors (P0-P3) and memory module (M0).
(a)-(c) illustrate a request by P0 for exclusive access to a block that is satisfied by memory (a memory-to-cache transfer)
(d)-(f) illustrate a similar request by P0 where P1 is the owner and P3 is a sharer (a cache-to-cache transfer with an inval-
idation). Totally ordered messages are drawn with solid lines and unordered messages are drawn with dashed lines.

Requestor Owner

Shared

Invalid

Home
Owner: non-memory

P0

M0 P3

P2

P1

❶

❷
broadcast

data

marker

Requestor Owner

Shared

Invalid

Home
Owner: P1
Sharers: {P3}

P0

M0 P3

P2

P1❸
data

marker

❷❶

Requestor Owner

Shared

Invalid

Home
Owner: P1
Sharers: {P3}

P0

M0 P3

P2

P1❸
data

marker

❷❶

Requestor Invalid

Invalid

Invalid

Home
Owner: memory
Sharers: none

P0

M0 P3

P2

P1

❷
data

marker

❷❶

Requestor Invalid

Invalid

Invalid

Home
Owner: memory
Sharers: none

P0

M0 P3

P2

P1

❷
data marker❶

Requestor Invalid

Invalid

Invalid

Home
Owner: memory

P0

M0 P3

P2

P1

❶
❷

broadcast

data

marker

Snooping and BASH broadcast Directory BASH unicast

{ Sharers: {P3}

m
em

or
y-

to
-c

ac
he

tr
an

sf
er

ca
ch

e-
to

-c
ac

he
tr

an
sf

er

(a) (b) (c)

(d) (e) (f)

1. Along with the total order, the GS320 protocol guarantees that all fo
warded requests can be processed at the target node, which is also nece
to eliminate explicit acknowledgments.
4

t
sat-
pa-

ti-
ol-
or.
e

and
n-

net-
ed
ay
ce
xist

st
x-

n
r
for
he

is

its

t-
a

sts

ay
gle

ive
ifi-
k
he

its

ls
et it
a

i-
lly
ys
l-
s-

ms
on-
work to eliminate the need for explicit acknowledgments and
preserve order between racing transactions. However, we
must resolve a key discrepancy in how these protocols order
racing transactions. InSnooping, racing request messages
are ordered entirely by the request network. InDirectory, the
order of racing messages is determined by the order in which
they are processed by the directory controller; the ordered
multicast network simply preserves this order for forwarded
requests. Resolving this difference requires subtle, but rela-
tively simple, hardware. Our adaptive protocol handles these
races similarly to Multicast Snooping [4, 28], andBASHcan
be considered a special case of this more general protocol.

Our hybrid protocol uses two virtual networks. Requests
use a totally ordered multicast request network, but no
restrictions are placed upon its topology or synchrony. As in
Snooping, the total order of requests—necessary for correct
coherence protocol behavior and enforcing a memory con-
sistency model—is determined by their ordering on the
request network. Responses travel on an unordered point-to-
point data network.

From the requestor’s point of view,BASHbehaves simi-
larly to Snooping, except that the cache controller must
choose whether to broadcast or unicast each request. Our
policy for deciding between broadcast and unicast was
explained in Section 2.2. Writeback requests are always uni-
cast. Since the request network is the ordering point,a BASH
“unicast” request is actually a dualcast sent to both the home
node and back to the requestor. Similar toSnooping, the
return of the request acts as the marker and informs the
requestor of the transaction’s place in the total order. Proces-
sors respond to incoming requests as inSnooping, except
processors must detect and ignore retried requests as dis-
cussed below.

Like Directory, BASH’s memory controller maintains the
owner and a superset of the sharers for each block for which
it is the home. The memory controller’s basic operation is to
compare the owner/sharer information from the directory
against the set of nodes that received the request message to
determine if the request was sent to a sufficient set of nodes.2

If the request was sent to the owner and all necessary sharers,
the memory controller updates the directory state and
responds with data as necessary. For broadcast requests, a
BASHmemory controller behaves as inSnooping, with the
addition of updating the directory state as needed. For uni-
cast requests that find data at the home, the memory control-
ler behaves as inDirectory, immediately updating the state
and responding with data. UnlikeDirectory, BASHneed not
send a marker message, since this was already sent with the
original request.

When a processor issues a unicast for a block that is
owned in a third node, the memory controller behaves as in

Directory, with two important differences. First, it does no
update the directory state, because the request is not yet
isfied. Second, instead of forwarding the request on a se
rate forwarded request network, itretries the request as a
multicast on the totally ordered request network. The mul
cast set for the retried request includes the memory contr
ler in addition to the owner, sharers, and request
Assuming no racing transactions, the owner will satisfy th
retried request.

More complex cases occur when broadcasts, unicasts,
multicast retries race for the same block. The memory co
troller has a “window of vulnerability” between when the
original and retried requests are ordered on the request
work. If a broadcast request for the same block is order
during that window, the retried request’s multicast set m
be insufficient, forcing the request to be retried again. Sin
any non-broadcast request may require retries, there e
livelock and deadlock issues, discussed in Section 3.4.

3.4 Discussion
With BASH, as for any coherence protocol, one mu

address the issues of livelock/deadlock, scalability, comple
ity, and verification.

Livelock and deadlock.Retrying requests presents the twi
problems of livelock and deadlock. Livelock could occur, fo
example, if a non-broadcast is competing with broadcasts
a heavily contended block; no matter how many times t
memory controller retries a non-broadcast request, there
no guarantee that it will ever succeed.BASHavoids livelock
by broadcasting—which is guaranteed to succeed—on
third retry.

Most multiprocessor systems avoid interconnection ne
work deadlocks (in part) by accessing virtual networks in
strict order to avoid cyclic dependences. By retrying reque
on the same virtual network,BASH introduces a circular
dependence—and thus potential deadlock—because it m
use the request network multiple times to process a sin
request. Rather than avoiding deadlock,BASH detects a
potential deadlock and resolves it by sending a negat
acknowledgment (nack) to the original requestor. Spec
cally, if the memory controller cannot allocate a networ
buffer for the retry, it sends a nack to the requestor on t
data response network. The requestor can then reissue
request as a broadcast, which is guaranteed to succeed.

Scalability. BASHis more scalable than snooping protoco
because it does not require all requests to be broadcast, y
is less scalable than directory protocols that do not rely on
totally ordered interconnect [20, 21]. Fortunately, hierarch
cal switches can be used to make high-bandwidth tota
ordered interconnects. Removing the broadcast-alwa
behavior of snooping may allow the design of a well-ba
anced system of significantly larger size than would be po
sible with broadcast snooping. Examples of real syste
with a large number of processors and an ordered interc

2. If a processor is the owner, it also tracks the sharer set and determines if
the request was sufficient, so as to make a decision consistent with that of
the memory controller.
5

ial
lts
rk
of

ib-
en

rk-

nd
the
to

one
s to
ro-
ile
ory
ta-

e
p-

es
he
We
ia a

,
l-
by
h
ed
data
yte
nect include the AlphaServer GS320 [10], Sun’s UE10000
[6], and Fujitsu’s PRIMEPOWER 2000 [15], and these sys-
tems support 32, 64, and 128 processors, respectively. In
addition, Martin et al. [23] recently proposed an approach for
an ordered interconnect with no central bottleneck. This
approach allows for more general, and perhaps more scal-
able, interconnect topologies that still maintain a total order.

Complexity. As a hybrid of two protocols,BASH is more
complex than either protocol on which it is based, and the
difficulty of verification is directly related to the complexity.
However, complexity does not grow as much as one might
expect because of the strong similarities between the under-
lying protocols. For example,BASHprocessors react identi-
cally to requests, regardless of whether they are unicasts,
multicasts, or broadcasts. In fact, a broadcast in this system
appears as though the directory simply specified an overly
generous set of sharers to invalidate.

As a rough measure of the complexity of each protocol,
Table 1 displays the numbers of states (both stable and tran-
sient), events, and state transitions for each controller. Com-
pared to Snoopingand Directory, we find BASH has a
comparable number of states, but about 50% more events
and double the number of transitions. While not all
state/event combinations are equally difficult to verify, and
the numbers of states and events depend somewhat on how
one chooses to express a protocol, implementingBASH
should be less difficult than including both a snooping and
directory protocol in the same system.

Verification. To gain confidence in the correctness ofBASH,
we have used both random testing and formal methods. All
three protocols—Snooping, Directory, and BASH—were
tested using a stand-alone random tester. This tester uses
false sharing, random action/check (store/load) pairs [33],
and widely variable message latencies to force each protocol
through a myriad of corner cases. We ran the tester through
millions of coherence operations and uncovered numerous
subtle race conditions. In the end, our tool reported full cov-
erage for all state transitions with no detected errors.

In our experience, random testing is excellent at finding
protocol errors even for complex protocols, but it is little
help for finding deadlock, livelock, and memory consistency
model errors. We have explored more formal methods,
including model checking and Lamport clocks [26], to
address these issues. A technical report [28] describes our
experience verifying an enhanced version of the Multicast
Snooping protocol [4].3 Since BASH is based upon this
enhanced protocol, this proof carries over directly toBASH.

4 Microbenchmark Performance Evaluation
Before presenting performance results for commerc

workloads using full-system simulation, we present resu
for a simple locking microbenchmark. The microbenchma
is easy to understand and allows us to explore the effects
system scaling and workload intensity. We start by descr
ing our microbenchmark and simulation methods. We th
explore the performance ofBASHover a range of available
bandwidths, utilization thresholds, system sizes, and wo
load intensities.

4.1 Microbenchmark
In the microbenchmark, each processor acquires a

releases locks that are generally uncontended. After
release of one lock, a processor immediately attempts
acquire another lock. Each processor can have at most
outstanding request. Since we choose the number of lock
be approximately the number of lines per cache, the mic
benchmark incurs sharing misses almost exclusively. Wh
this is near the worst-case performance scenario for direct
protocols, smaller fractions of sharing misses do not quali
tively change our conclusions, as shown in Section 5.

4.2 Simulation Methods
Before discussing our microbenchmark results, w

describe our memory system simulator and timing assum
tions. Our memory hierarchy simulator captures timing rac
and all state transitions (including transient states) of t
coherence protocols in cache and memory controllers.
consider integrated processor/memory nodes connected v
single link to an interconnection network. SinceBASH,
Snooping, andDirectory all require a total order of requests
but do not require a specific interconnection network topo
ogy, we abstract the details of the interconnect design
modeling a fixed latency crossbar with limited bandwidt
and contention at the endpoints. All request, forward
request, and retried request messages are 8 bytes, and
responses are 72 bytes (64 byte data block with an 8 b
header).

3. The original Multicast Snooping protocol described in Bilir et al. [4]
must nack insufficient requests. Sorin et al. [28] describe the important opti-
mization of retries at the directory. This optimization allows an insufficient
unicast inBASH to have the same latency as a request that must be for-
warded by the directory.

Table 1. States, events, and transitions forBASH,
Snooping, and Directory

Protocol

Total Cache Mem/Dir

S
ta

te
s

E
ve

nt
s

T
ra

ns
.

S
ta

te
s

E
ve

nt
s

T
ra

ns
.

S
ta

te
s

E
ve

nt
s

T
ra

ns
.

BASH 21 23 114 17 14 94 4 9 20

Snooping 19 13 68 17 9 61 2 4 7

Directory 21 13 75 17 9 61 4 4 14
6

in

s,

ven
us

rk
6.
ti-
e
s

i-
%
h

es,
to
as
of

i-
or
od

ce
-

To approximate the published latencies of systems like the
Alpha 21364 [12], we selected 50 ns for each interconnec-
tion network traversal (which includes wire propagation,
synchronization, and routing) and 80 ns for memory DRAM
access time. When a protocol request arrives at a processor
or memory, it takes 25 ns or 80 ns, respectively, to provide
data to the interconnect. These assumed latencies result in a
180 ns latency to obtain a block from memory in all three
protocols, a 125 ns latency for a cache-to-cache transfer for
both aSnoopingand a broadcastBASHrequest, and a 255 ns
latency for a cache-to-cache transfer for aDirectory and a
unicastBASH request.

ForSnoopingand successfulBASHrequests, the cache-to-
cache transfer latency is smaller than the memory latency
(~70% of memory latency: 125 ns vs. 180 ns). We assume
that this scenario is carefully optimized, as is the case for the
IBM NorthStar (RS64-II) SMPs [5], where a cache-to-cache
transfer latency is ~55% of main memory latency [17]. The
cache-to-cache transfer latency forDirectory requests and
for BASH requests that need to be retried is significantly
higher than a fetch from memory, due to the indirection
through the directory (memory controller). An indirected
request incurs the latencies of a DRAM directory access,
supplying the data from the cache, and three interconnect
traversals. An SRAM directory or directory cache would
mitigate the latency of accessing directory state. However,
due to a third traversal of the interconnect, aDirectory
cache-to-cache transfer would still have a greater latency
than that of a broadcast request.

4.3 Microbenchmark Results
We compare the microbenchmark performance (in units of

normalized lock acquires per nanosecond) ofBASHagainst
SnoopingandDirectory. Figure 5 presents the same data as
shown in Figure 1, except in Figure 5 performance is nor-
malized to that ofBASH. The graph shows that, for a 64-pro-

cessor system,BASHperforms likeDirectory in the limited
bandwidth case and likeSnoopingin the plentiful bandwidth
case. At extremely low available bandwidths,Directory out-
performs both other protocols;BASH is ~10% worse than
Directory due to additional marker messages (shown
Figure 4(f)). In the middle range (near where theSnooping
andDirectorycurves intersect),BASHoutperforms both pro-
tocols by up to 25%. As the available bandwidth increase
SnoopingoutperformsBASH, becauseBASHconservatively
reduces its rate of broadcast. As bandwidth becomes e
more plentiful,BASHalways broadcasts requests, and th
the performances ofBASH andSnooping converge.

Interconnection network utilization. To further explain
these performance results, we plot interconnection netwo
endpoint utilization versus available bandwidth in Figure
Snoopinguses large amounts of bandwidth and thus over-u
lizes the network in the case of limited bandwidth, whil
Directory under-utilizes the network when bandwidth i
plentiful. BASH achieves the desired 75% utilization
(denoted by the horizontal line) until bandwidth is so plent
ful that even by always broadcasting it does not reach 75
utilization. Figure 5 shows that this is also the point at whic
the performances ofBASH andSnooping converge.

Utilization threshold selection.In Figure 7, we plot perfor-
mance versus available bandwidth for three threshold valu
and we observe that performance is not overly sensitive
the exact threshold value selected. Even for thresholds
high as 95% or as low as 55%, the qualitative performance
BASHremains similar. While we choose 75% for our exper
ments, we do not claim that 75% is the optimal threshold f
this or any other workload. In practice, it has achieved go
performance.

Adaptation to system size.To explore the potential benefits
of BASHover a range of system sizes, we plot performan
per processorversus available bandwidth for a range of pro

100 1000 10000

endpoint bandwidth available (MB/second)

0.0

0.5

1.0

Snooping
BASH
Directory

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

100 1000 10000

endpoint bandwidth available (MB/second)

0

20

40

60

80

100

Snooping
BASH
Directory

75%

en
dp

oi
nt

 li
nk

 u
til

iz
at

io
n

(p
er

ce
nt

)
100 1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH: 55%
BASH: 75%
BASH: 95%
Directory

pe
rf

or
m

an
ce

Figure 5. Normalized performance
vs. available bandwidth for a micro-
benchmark on 64 processors

Figure 6. Utilization vs. available
bandwidth for a microbenchmark
on 64 processors

Figure 7. Sensitivity to utilization
threshold value for a microbench-
mark on 64 processors
7

te
im-
d-
al.

on
ers,
i-
p

ure-
-
sts,

u-

ed
one
ia-
n-
.
om-
s-
be
as

s-
cs
n
m-
t
s-
e
C

ics
cessor counts in Figure 8. Endpoint link bandwidth per pro-
cessor is fixed at 1600 MB/second, and the processor count
is plotted logarithmically on the x-axis. We observe that the
line for Directory is nearly flat, signifying near-perfect scal-
ability. BASHperforms as well asSnoopingfor small sys-
tems and as well asDirectory for large systems. In the mid-
range,BASHoutperforms both other protocols. For this spe-
cific design point,Directory far outperformsSnoopingfor
processor counts above 64. Higher link bandwidth would
helpSnooping, but the figure illustrates why directory proto-
cols are attractive for large-scale systems and why an adap-
tive scheme is desirable in general.

Adaptation to workload intensity. To explore the impact of
workload behavior on performance, we adjust the intensity
of the microbenchmark’s memory traffic. The memory traf-
fic’s intensity is adjusted by adding athink time(i.e., the time
between when a processor releases one lock and acquires
another). Figure 9 plots average miss latency (lower is bet-
ter) versus think time. Increasing think time corresponds to
decreasing workload intensity. Our results show that, for a
fixed system configuration (64 processors and 1600 MB/sec-
ond endpoint link bandwidth), the choice between snooping
and directories depends on workload intensity (i.e., think
time or miss rate).

5 Workload Performance Evaluation
While microbenchmarks can provide insight into behavior

and allow exploration of the design space,BASH’s perfor-
mance on commercial workloads matters most. This section
describes our benchmarks, target system assumptions, and
simulation techniques for evaluating the performance of
bandwidth adaptive snooping. We compareBASH against
Snoopingand Directory using full-system simulation of a
16-processor SPARC system running four commercial work-
loads and one scientific benchmark. Unfortunately, due to
the complexities of full-system simulation and commercial
workload setup and tuning, we are currently unable to obtain

results with more than 16 processors. To approxima
BASH’s performance on larger systems, we also present s
ulation results for a 16 processor system in which the ban
width cost of broadcasting is four times greater than norm

5.1 Benchmarks
Table 2 describes our benchmarks. We concentrate

commercial workloads, such as database and web serv
but we also include one scientific application for compar
son. We run all of the commercial workloads for a warm-u
period to bring the system to a steady state before meas
ment. To simplify the simulations of our commercial work
loads, the client does not model think time between reque
and the client and server are collocated on the same sim
lated machine.

5.2 Target System Assumptions
We evaluate 16-node SPARC systems running unmodifi

Solaris 8. Each node contains a processor core, level
caches, a unified level two cache (4 MB, 4-way set assoc
tive, 64-byte blocks), a cache controller, and a memory co
troller for part of the globally shared memory (2 GB total)
We assume that a processor and level one caches would c
plete four billion instructions per second if the memory sy
tem beyond the level one caches was perfect. This could
accomplished, for example, with a 2 GHz processor that h
a perfect-L2-cache IPC (instructions per cycle) of 2.

5.3 Simulation Methods
We simulate our target systems with the Simics full-sy

tem multiprocessor simulator [22], and we extend Simi
with a memory hierarchy simulator (described i
Section 4.2) to compute execution times. Simics is a syste
level architectural simulator developed by Virtutech AB tha
is capable of booting unmodified commercial operating sy
tems and running unmodified applications. We us
Simics/sun4u, which simulates Sun Microsystems’ SPAR
v9 platform architecture (e.g., used for Sun E6000s). Sim

4 8 16 32 64 128 256

processors

0.0

0.2

0.4

0.6

0.8

1.0

pe
rf

or
m

an
ce

 p
er

 p
ro

ce
ss

or

Snooping
BASH
Directory

Figure 8. Impact of system size for a microbenchmark
with 1600 MB/second endpoint bandwidth per processor

Figure 9. Average miss latency vs. think time for a micro-
benchmark on 64 processors with 1600 MB/second end-
point bandwidth per processor

0 200 400 600 800 1000

think time (cycles)

0

100

200

300

400

av
er

ag
e

m
is

s
la

te
nc

y
(c

yc
le

s)

Snooping
BASH
Directory
8

-
and

t

er
tion

,
er-
11
nd-

k
d-
ct

ors

he
ed

de

es

sed on
se and
log disk.

s, and our

ica-
[2] to

proces-

dle-
ads to
tem was

stem

base is a
s warmed

ed by
hread
is a functional simulator only, and it assumes that each
instruction takes one simulated cycle to execute (although
I/O may take longer), but it provides an interface to support
our detailed memory hierarchy simulation. We use Simics to
generate blocking requests to a unified single level cache.
We use this simple processor model to enable tractable simu-
lation times for full-system, multiprocessor simulation of
commercial workloads.

Since full-system simulation captures kernel behavior and
inter-processor timing, small changes in system timing can
lead to significant variations in execution time. For example,
we find that our operating system intensive workloads
(OLTP, Slashcode, and Apache) exhibit more variation than
workloads that are less operating system intensive (SPECjbb
and Barnes-Hut). To overcome observed instabilities, we cal-
culate the arithmetic mean and standard deviation of multi-
ple simulations to estimate experimental uncertainty. We plot
the mean and, if the coefficient of variation is greater than
1%, error bars at plus/minus one standard deviation for all
data points. To gather multiple data points, we perturb our
otherwise deterministic simulations by adding a small ran-
dom delay to each request.

5.4 Results
We now present results for the workloads described in

Table 2. Figure 10 illustrates the performances of the proto-
cols over a range of bandwidths for 16 processors. For each
benchmark, we plot performance—normalized to that of
Snooping with unbounded bandwidth—as a function of
available interconnect endpoint bandwidth. We also include

the results of our microbenchmark to allow for direct com
parison. Our results show that, for a 16 processor system
a range of bandwidths,Snoopingand BASHperform simi-
larly, and both outperfomDirectory. The macrobenchmark
results look qualitatively similar to the microbenchmark, bu
the performance difference betweenSnoopingandDirectory
is smaller for some of the benchmarks. This is due to a low
cache miss rate (Barnes and Slashcode) or a smaller frac
of sharing misses (SPECjbb).

To approximateBASH’s performance on a larger system
we increase the cost of broadcast by quadrupling the int
connect bandwidth used by any broadcast request. Figure
presents these results and shows that, for a range of ba
widths,BASHperforms as well or better than bothSnooping
and Directory. We did not perform any macrobenchmar
simulations with less than 600 MB/second endpoint ban
width due to excessive simulation times. However, we expe
the performance ofBASHto closely track that ofDirectory,
as was the case for the microbenchmark on 64 process
(shown in Figure 1).

While these results show thatBASHcan adapt to system
configuration, one ofBASH’s strengths is adaptation to vary-
ing behaviors between workloads. In Figure 12, we plot t
1600 MB/second data excerpted from Figure 11 normaliz
to the performance ofBASH. For this configuration,Snoop-
ing outperformsDirectory for Barnes-Hut and OLTP, but the
reverse is true for SPECjbb. The performances of Slashco
and Apache are similar forSnoopingandDirectory. For this
configuration,BASHmatches or exceeds the performanc
of both other protocols for all five workloads.

Table 2. Benchmark descriptions

On-Line Transaction Processing (OLTP): DB2 with a TPC-C-like workload.The TPC-C benchmark models the database activity of a
wholesale supplier, with many concurrent users performing read/write transactions against the database. Our OLTP workload is ba
the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system and an IBM benchmark kit to build the databa
model users. Our experiments use a 1 GB 10-warehouse database stored on five raw disks and an additional dedicated database
There are 128 simulated users (8 per processor). The database was warmed up for 10,000 transactions before taking measurement
results are based on runs of 1000 transactions.

Static Web Content Serving: Apache with SURGE.Web servers such as Apache have become an important enterprise server appl
tion. We use Apache 1.3.19 for SPARC/Solaris 8 configured to use pthread locks and minimal logging as the web server, and SURGE
generate web requests. Our experiments used a repository of 2000 files (totalling ~50 MB). There are 160 simulated users (10 per
sor). The system was warmed up for ~80,000 transactions, and our results are based on runs of 2,500 requests.

Java Server Workload: SPECjbb.SPECjbb2000 is a server-side java benchmark that models a 3-tier system, focusing on the “mid
ware” server business logic and object manipulation. We used Sun’s HotSpot 1.4.0 Server JVM. The benchmark includes driver thre
generate transactions. Our experiments used 24 threads and 24 warehouses (with a data size of approximately ~500MB). The sys
warmed up for 100,000 transactions, and our results are based on runs of 100,000 transactions.

Dynamic Web Content Serving: Slashcode.Our Slashcode benchmark is based on an open-source dynamic web message posting sy
used by slashdot.org. We use Slashcode 2.0, Apache 1.3.20, and Apache’smod_perl 1.25 module for the web server, and MySQL 3.23.39
as the database engine. A multithreaded user emulation program is used to simulate user browsing and posting behavior. The data
snapshot of the slashcode.org site, and it contains ~3000 messages. There are 48 simulated users (3 per processor). The system wa
up for 240 transactions before taking measurements, and our results are based on runs of 50 transactions.

Scientific application: Barnes-Hut from SPLASH-2.We selected one application from the SPLASH-2 benchmark suite [32]:barnes-hut
with 64K bodies. The benchmark was compiled with Sun’s WorkShop C compiler and uses the PARMACS shared-memory macros us
Artiaga et al. [1]. The macro library was modified to enable user-level synchronization through test-and-set locks rather than POSIX-t
library calls. We began measurement at the start of the parallel phase to avoid measuring thread forking.
9

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Microbenchmark

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Apache

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Barnes-Hut

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

OLTP

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Slashcode

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

SPECjbb

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Microbenchmark

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Apache

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Barnes-Hut

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

OLTP

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

Slashcode

1000 10000

endpoint bandwidth available (MB/second)

0.0

0.2

0.4

0.6

0.8

1.0

Snooping
BASH
Directory

pe
rf

or
m

an
ce

SPECjbb

Figure 10. Performance vs. available bandwidth for 16 processors

Figure 11. Performance vs. available bandwidth for 16 processors with 4x broadcast cost
10

ion
ers
tle

ng
y
t-

is
elies
-
te
h-
n.
ting

er-
ro-
n

the
tive
or
m-
to
s

l
st.
i-
ht
are
as

ion
h
r

bal
d

e
g

cia
of
h
r,
r

Though increasing the relative cost of broadcasting does
not capture other effects of increasing system sizes such as
lock contention and changes to sharing patterns, we believe
these results show that bandwidth adaptive coherence in gen-
eral, andBASH in particular, enables robust system perfor-
mance for a wide range of system configurations and
workloads.

6 Related Work
Prior related research falls roughly into the two categories

of protocols and networks.

Protocols.There is a great deal of research in protocols that
adapt towards sharing patterns rather than network usage.
Multicast Snooping protocols [4, 28] allow processors to
multicast requests to those nodes that are suspected to need
to observe the request, and the multicast mask is predicted
based on observed sharing patterns. This differs from band-
width adaptive snooping in thatBASH only predicts two
types of masks (unicast or broadcast) and chooses its multi-
cast mask based on available bandwidth. Competitive
snoopy caching adapts between an invalidate and an update
protocol [16] to limit the overhead to within a factor of two
of optimal. Additional research has pursued the idea of adap-
tive protocols, but none of which we are aware consider
interconnection network utilization. Another class of adap-
tive protocols includes the COMA [9, 13] and R-NUMA [8]
protocols. These protocols migrate data to where it is used,
adaptively reducing communication and network traffic.

Networks. Scott and Sohi [27] proposed using network
feedback to adaptively avoid tree saturation in multistage
interconnection networks. They use feedback control theory

to adjust network usage to avoid performance degradat
due to hot spots in memory access patterns. This work diff
from bandwidth adaptive snooping in that it seeks to throt
requests from being issued, whereasBASHchooses between
issuing a unicast or a broadcast.

Thottethodi et al. [31] have developed a scheme for usi
global network information to throttle requests before the
can congest the network. At the cost of an additional ne
work sideband for communication of contention effects, th
scheme can adapt more accurately than a scheme that r
solely on local information. This work complements band
width adaptive snooping in that it could be used to estima
network utilization, and future work may adapt these tec
niques to improve our detection of network congestio
Other research has also explored techniques for estima
interconnect traffic (refer to the related work in [31]).

7 Conclusions and Future Work
We have developed a hybrid shared memory cache coh

ence protocol, and we have demonstrated the benefits p
vided by adaptivity. Moreover, the trend towards integratio
of the coherence protocol logic and the processor on
same die suggests a unified adaptive design. An adap
approach allows a single highly integrated microprocess
design to be used in many system configurations (e.g., nu
ber of processors). Also, adaptivity allows the system
adjust to various workloads, including future workload
whose behaviors are unknown at hardware design time.

One area of future work is the exploration of additiona
mechanisms for deciding whether to unicast or broadca
Particularly in the middle range of bandwidth where a dec
sion based on available bandwidth is less obvious, it mig
be preferable to predict based on sharing patterns. There
many instances where the decision would be easy, such
the choice to unicast requests for misses due to instruct
fetches. Moreover, integrating bandwidth adaptivity wit
multicast snooping [4]—rather than simply unicasting o
broadcasting—might be worthwhile. Additionally, more
sophisticated adaptive mechanisms, perhaps using glo
estimates of interconnection network utilization [31], coul
be employed.

Acknowledgments

We thank Virtutech AB for their support of Simics and th
Condor group and Remzi Arpaci-Dusseau for providin
additional computing resources. Alaa Alameldeen, Pa
Harper, and Min Xu contributed to the setup and tuning
our workloads. We also thank Adam Butts, Kouros
Gharachorloo, Anders Landin, Alvin Lebeck, Ravi Rajwa
Amir Roth, Craig Zilles and the Wisconsin Compute
Architecture Affiliates for their comments on this work.

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

B
A

SH
Sn

oo
pi

ng
D

ir
ec

to
ry

Apache

B
A

SH
Sn

oo
pi

ng
D

ir
ec

to
ry

Barnes-Hut

B
A

SH
Sn

oo
pi

ng
D

ir
ec

to
ry

OLTP

B
A

SH
Sn

oo
pi

ng
D

ir
ec

to
ry

Slashcode

B
A

SH
Sn

oo
pi

ng
D

ir
ec

to
ry

SPECjbb

Figure 12. Adapting to workload intensity
11

r,
e

n.

r

g

p,

,

r

r

t
n
lel

rs

ce
es

he
E
l

y.
p

f-
n
h-

he
al

l

st
References
[1] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra.

Implementing PARMACS Macros for Shared Memory
Multiprocessor Environments. Technical report, Polytechnic
University of Catalunya, Department of Computer
Architecture Technical Report UPC-DAC-1997-07, Jan. 1997.

[2] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
In Proceedings of the 1998 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 151–
160, June 1998.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
System Characterization of Commercial Workloads. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[4] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin,
M. D. Hill, and D. A. Wood. Multicast Snooping: A New
Coherence Method Using a Multicast Address Network. In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, pages 294–304, May 1999.

[5] J. Borkenhagen and S. Storino. 4th Generation 64-bit
PowerPC-Compatible Commercial Processor Design. IBM
Server Group Whitepaper, Jan. 1999.

[6] A. Charlesworth. Starfire: Extending the SMP Envelope.IEEE
Micro, 18(1):39–49, Jan/Feb 1998.

[7] A. Charlesworth. The Sun Fireplane Interconnect. In
Proceedings of SC2001, Nov. 2001.

[8] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for
Unifying S-COMA and CC-NUMA. InProceedings of the
24th Annual International Symposium on Computer
Architecture, pages 229–240, June 1997.

[9] S. J. Frank. Tightly Coupled Multiprocessor System Speeds
Memory-access Times.Electronics, 57(1):164–169, Jan.
1984.

[10] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS320. In
Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.

[11] S. W. Golumb.Shift Register Sequences. Aegean Park Press,
revised edition, 1982.

[12] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck.
Microprocessor Report, Oct. 1998.

[13] E. Hagersten, A. Landin, and S. Haridi. DDM–A Cache-Only
Memory Architecture.IEEE Computer, 25(9):44–54, Sept.
1992.

[14] J. Hennessy. The Future of Systems Research.IEEE
Computer, 32(8):27–33, Aug. 1999.

[15] N. Izuta, T. Watabe, T. Shimizu, and T. Ichihashi. Overview
of PRIMEPOWER 2000/1000/800 Hardware.Fujitsu
Scientific & Technical Journal, 36(2):121–127, Dec. 2000.

[16] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator.
Competitive Snoopy Caching.Algorithmica, 3(1):79–119,
1988.

[17] S. Kunkel. Personal Communication, Apr. 2000.

[18] S. Kunkel, B. Armstrong, and P. Vitale. System Optimization
for OLTP Workloads.IEEE Micro, pages 56–64, May/June
1999.

[19] B. C. Kuo.Automatic Control Systems. Prentice Hall, seventh
edition, 1995.

[20] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of the 24th Annual
International Symposium on Computer Architecture, pages
241–251, June 1997.

[21] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Webe
A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. Th
Stanford DASH Multiprocessor.IEEE Computer, 25(3):63–
79, Mar. 1992.

[22] P. S. Magnusson et al. SimICS/sun4m: A Virtual Workstatio
In Proceedings of Usenix Annual Technical Conference, June
1998.

[23] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. Alameldeen,
R. M. Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D.
Hill, and D. A. Wood. Timestamp Snooping: An Approach fo
Extending SMPs. InProceedings of the Ninth International
Conference on Architectural Support for Programmin
Languages and Operating Systems, pages 25–36, Nov. 2000.

[24] J. R. Mashey. NUMAflex Modular Design Approach: A
Revolution in Evolution. Posted on comp.arch news grou
Aug. 2000.

[25] A. Nanda, K.-K. Mak, K. Sugavanam, R. K. Sahoo
V. Soundararajan, and T. B. Smith. MemorIES: A
Programmable, Real-Time Hardware Emulation Tool fo
Multiprocessor Server Design. InProceedings of the Ninth
International Conference on Architectural Support fo
Programming Languages and Operating Systems, Nov. 2000.

[26] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lampor
Clocks: Verifying a Directory Cache-Coherence Protocol. I
Proceedings of the Tenth ACM Symposium on Paral
Algorithms and Architectures, pages 67–76, June 1998.

[27] S. Scott and G. Sohi. The Use of Feedback in Multiprocesso
and its Application to Tree Saturation Control.IEEE
Transactions on Parallel and Distributed Systems, 1(4):385–
398, Oct. 1990.

[28] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M.
Martin, and D. A. Wood. Specifying and Verifying a
Broadcast and a Multicast Snooping Cache Coheren
Protocol. Technical Report 1412, Computer Scienc
Department, University of Wisconsin–Madison, Mar. 2000.

[29] P. Sweazey and A. J. Smith. A Class of Compatible Cac
Consistency Protocols and their Support by the IEE
Futurebus. InProceedings of the 13th Annual Internationa
Symposium on Computer Architecture, pages 414–423, June
1986.

[30] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharo
POWER4 System Microarchitecture. IBM Server Grou
Whitepaper, Oct. 2001.

[31] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Sel
Tuned Congestion Control for Multiprocessor Networks. I
Proceedings of the Seventh IEEE Symposium on Hig
Performance Computer Architecture, Jan. 2001.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. T
SPLASH-2 Programs: Characterization and Methodologic
Considerations. In Proceedings of the 22nd Annua
International Symposium on Computer Architecture, pages
24–37, June 1995.

[33] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a
Multiprocessor Cache Controller Using Random Te
Generation.IEEE Design and Test of Computers, Aug. 1990.
12

	Abstract
	1 Introduction
	Figure 1. Performance vs. available bandwidth for a microbenchmark on 64 processors

	2 A Bandwidth Adaptive Mechanism
	2.1 Goal and Approach
	Figure 2. Average queuing delay vs. utilization for a simple queuing network

	2.2 Implementation
	Figure 3. Example operation of the utilization counter

	3 A Bandwidth Adaptive Snooping Protocol
	3.1 A Snooping Protocol
	3.2 A Directory Protocol
	Figure 4. Example operation for Snooping, Directory, and BASH with four processors (P0-P3) and me...

	3.3 An Adaptive Hybrid Protocol
	3.4 Discussion
	Livelock and deadlock
	Scalability
	Complexity
	Verification

	4 Microbenchmark Performance Evaluation
	4.1 Microbenchmark
	Table 1. States, events, and transitions for BASH, Snooping, and Directory

	4.2 Simulation Methods
	4.3 Microbenchmark Results
	Figure 5. Normalized performance vs. available bandwidth for a microbenchmark on 64 processors
	Figure 6. Utilization vs. available bandwidth for a microbenchmark on 64 processors
	Figure 7. Sensitivity to utilization threshold value for a microbenchmark on 64 processors
	Interconnection network utilization
	Utilization threshold selection
	Adaptation to system size
	Figure 8. Impact of system size for a microbenchmark with 1600 MB/second endpoint bandwidth per p...
	Figure 9. Average miss latency vs. think time for a microbenchmark on 64 processors with 1600 MB/...

	Adaptation to workload intensity

	5 Workload Performance Evaluation
	5.1 Benchmarks
	Table 2. Benchmark descriptions
	On-Line Transaction Processing (OLTP): DB2 with a TPC-C-like workload.
	Static Web Content Serving: Apache with SURGE
	Java Server Workload: SPECjbb
	Dynamic Web Content Serving: Slashcode
	Scientific application: Barnes-Hut from SPLASH-2

	5.2 Target System Assumptions
	5.3 Simulation Methods
	Figure 10. Performance vs. available bandwidth for 16 processors
	Figure 11. Performance vs. available bandwidth for 16 processors with 4x broadcast cost

	5.4 Results
	Figure 12. Adapting to workload intensity

	6 Related Work
	Protocols
	Networks

	7 Conclusions and Future Work
	Acknowledgments
	References

	Bandwidth Adaptive Snooping
	Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and David A. Wood
	Computer Sciences Department University of Wisconsin-Madison {milo, sorin, markhill, david}@cs.wi...

