ICE: Managing Cold State for Big Data Applications

Badrish Chandramouli !, Justin Levandoski 2, Eli Cortez 3

Microsoft
Redmond, WA, USA

'padrishc@microsoft. com,

Abstract—The use of big data in a business revolves around a
monitor-mine-manage (M3) loop: data is monitored in real-time,
while mined insights are used to manage the business and derive
value. While mining has traditionally been performed offline,
recent years have seen an increasing need to perform all phases
of M3 in real-time. A stream processing engine (SPE) enables such
a seamless M3 loop for applications such as targeted advertising,
recommender systems, risk analysis, and call-center analytics.
However, these M3 applications require the SPE to maintain
massive amounts of state in memory, leading to resource usage
skew: memory is scarce and over-utilized, whereas CPU and I/0
are under-utilized. In this paper, we propose a novel solution to
scaling SPEs for memory-bound M3 applications that leverages
natural access skew in data-parallel subqueries, where a small
fraction of the state is hot (frequently accessed) and most state is
cold (infrequently accessed). We present ICE (incremental cold-
state engine), a framework that allows an SPE to seamlessly
migrate cold state to secondary storage (disk or flash). ICE uses a
novel architecture that exploits the semantics of individual stream
operators to efficiently manage cold state in an SPE using an
incremental log-structured store. We implemented ICE inside an
SPE. Experiments using real and synthetic datasets show that
ICE can reduce memory usage significantly without sacrificing
performance, and can sometimes even improve performance.

I. INTRODUCTION

The use of big data in a business can be summarized by
the monitor-mine-manage (M3) loop [1], [2]. Briefly, users
monitor or archive incoming data in real time, and mine the
archived “big data” to derive insights that feed into the manage
phase, where these insights are used to improve or derive
more value for the business. Two popular M3 applications are
introduced below (Section III describes them in greater detail).

1) Recommender Systems [3]: Platforms such as Net-
Flix, LinkedIn, Google News, and Microsoft XBox need to
recommend movies, news items, and blog posts to customers.
They monitor user ratings of items (e.g., movie ratings or news
“likes”). They mine the massive collected data, for example, by
building similarity models (between users and items, or pairs
of items). During the manage phase, they provide either on-
demand or push-based recommendations to users by applying
the model to that users ratings and preference.

2) Behavior Targeting Advertising [2]: Advertising plat-
forms such as Microsoft AdCenter and Yahoo! Ads show
targeted ads to users based on their historical behavior. They
monitor user behavior in the form of ad impression and ad
click logs, search history, and URLs visited. They mine the
large quantities of user data to eliminate activity by automated
bots, remove spurious clicks, reduce dimensionality, and build
user models. During the manage phase, they track recent per-
user behaviour in real time. Given an opportunity to show an

2 justin.levandoski@microsoft.com,

3elicorte@microsoft.com

ad, they score the user and display the most relevant ad.

There is an increasing need to close the M3 loop, perform-
ing all phases in real time [2]. For instance, a real-time M3 loop
allows a recommender system to suggest news articles or blog
posts in time for them to be relevant. An advertising platform
can use recent and rapidly changing trends (e.g., flash sales
or unexpected events) to target user appropriately. Thus, we
are witnessing a growing trend towards real-time in-memory
analytics, where a stream processing engine (SPE) is used for
processing large quantities of data in all the three phases of
M3. For instance, in the mine phase, actions such as recom-
mendation similarity model generation and maintenance for
pairs of items, bot elimination, and dimensionality reduction
are easily expressed using temporal queries. The same queries
are used for one-pass analytics over offline data [2], e.g., to
tune parameters by back-testing queries on historical data.

A. Challenges

M3 applications have two main characteristics that have
deep implications on traditional SPE architectures:

1) Partitioned Computation: M3 queries typically op-
erate on large quantities of data (e.g., millions of users and
ads). At the same time, every sub-query is usually naturally
partitionable by some key. For instance, item-item model
generation in a recommender system is partitionable by items
(e.g., movies), while generating item-item pairs for building
the model is partitionable by user. Bot elimination in targeted
advertising can be partitioned by user, whereas dimensionality
reduction can be done on a per-ad basis. Streaming systems
incorporate a grouped sub-query (GSQ) operation to express
such partitionable queries. This operator takes a sub-query and
a partition key, and logically executes the sub-query for every
distinct partition key.

2) Large Windows and State: SPEs traditionally operate
on a limited history of data (in the form of windows). This
allows query state to be retained in memory for processing
events efficiently. However, M3 applications need large (or
infinite) windows, with a large amount of state in memory.
In a recommender, we may retain prior ratings of every user
for several months or years in order to build robust similarity
models [3]. The models themselves may be retained and
updated in memory, for all items in the system. In behavior
targeted advertising, real-time scoring requires us to retain user
behavior for weeks in order to correlate with new behavior
and use the model to determine the category the user would
be classified into for ad selection. Bot elimination requires us
to maintain several counters and other auxiliary state on a per-
user basis, with a large sliding window (e.g., six hours) over
which bots are detected.

3000 40000

1500 3
30000
2000 5
o 1500 20000
£ <
= = 15000
o 1000 3!
-3

|
10000 |
500 I
SO0
o a
- - v
3 LA
r

Fig. 1: Popularity of users and items in the MovieLens dataset.

SPEs are traditionally designed for main-memory-resident
operations and are unable to efficiently handle the above
characteristics of M3 applications. Using a traditional database
is out of question given the need to handle continuous queries
(CQs) in real time with temporal processing semantics. A sim-
ple solution is to scale out processing on multiple machines, by
partitioning data on a per-subquery basis. Unfortunately, this
can result is a significant waste of resources as queries are
memory bound, leading to low CPU utilization per machine.
For instance, we found CPU utilization to be less than 20%
when using Microsoft StreamInsight (a commercial SPE) for
a behavior-targeted advertising application. Scale-out to gain
memory is even less desirable in pay-per-hour cloud environ-
ments, where we wish to make full use all of the machines
resource (both disk and memory). Traditional load-shedding
schemes [4], [5] drop tuples to handle load; however, choos-
ing tuples to drop that will reduce state significantly while
introducing low result error is hard for arbitrarily complex
M3 queries, and is not an option for applications where query
correctness is required.

B. Proposal: Use Storage before Scaling Out

We make two key observations that hold for our target
applications. First, although a large amount of state is “in
play” in the engine, only a small fraction of the state is
actively accessed by the query at any given point in time. The
remaining state, which we call cold state, is necessary but not
actively accessed at any given point during processing. Second,
the granularity of state classification for any sub-query in the
application matches exactly with the partitioning key used for
that sub-query. To make this point concrete, Figure 1 provides
the distribution of user and item popularity in the MovieLens
dataset [6] of 10M movie ratings; both are highly skewed.
Many users are either inactive (not rating items or receiving
recommendations) or have stopped using the service altogether.
Further, there exists a long tail of unpopular items that are
rarely updated or accessed during the recommendation process.
Sub-queries in the recommender application are partitioned
by the same grouping keys (Userld and Item). Likewise, in
targeted advertising, although we track the behavior of millions
of users over a long period, only a small fraction of users are
active at any given point in time.

Based on these observations, we propose leveraging sec-
ondary storage to offload cold state on-the-fly in an SPE at a
per-sub-query-per-group granularity. To achieve this, we need
to efficiently detect and offload cold state during runtime.
Further, we efficiently reload cold state on-the-fly into main

memory when necessary. This facility allows the SPE to handle
applications with large state at low latency, without sacrificing
performance or query correctness, while using fewer machines
or main memory.

We considered traditional page caching for managing cold
state in the SPE, but found this approach to be inadequate.
Caching is a well-known method used in systems that assumes
most lives on storage. It does not work well in our setting due
to two reasons. First, SPEs are commonly built assuming data
is memory-resident and do not use page-level indirection for
efficiency reasons. Second, page-level caching cannot reason
about and exploit knowledge inherent in the query semantics
such as group-level access skews (we discuss further caching
drawbacks in Section VII). Previous research has also investi-
gated interfacing SPEs with secondary storage (or an RDBMS)
to query historical data [7], [8]. Our scenario is different; we
study scaling SPEs by transparently and efficiently offloading
(or reloading) cold query internal state on-the-fly to (or from)
secondary storage, with a goal of keeping latency low while
using significantly lesser memory. Finally, we note that our
problem is significantly different from that of efficient hash
table maintenance because SPEs operate at a higher level of
abstraction - an ensemble of incrementally updatable and win-
dowed grouped states organized as a graph — which provides
us with many more challenges and opportunities for efficient
state management.

C. Contributions

We design and build a system called ICE (for incremental
cold-state engine) that adds native support for secondary
storage by using a new physical-operator-aware approach to
cold-state management. ICE exploits query semantics and the
state organization of individual operators to efficiently handle
cold state in an SPE. ICE has the following features:

(1) ICE leverages the grouped sub-query (GSQ) operation
for fine-grained cold state management. This is based on our
finding that M3 applications are usually data parallel, where
a computation is repeated for every partitioning key. GSQ,
which takes a sub-query and a partitioning key and executes
the sub-plan for every key, corresponds to this data-parallel
paradigm. ICE uses a cold state manager (CSM) that tracks
groups with low overhead and decides which groups should
migrate to secondary storage.

(2) The CSM is decoupled from the stream engine inter-
nals. It only knows about logical group ids and sends migration
commands for making specific groups cold as events to the
relevant GSQ and its sub-plan. The GSQ is in charge of
migrating the group to/from storage. This decoupled archi-
tecture allows us flexibility in how we implement the CSM,
for instance, to easily swap cold data classification techniques
without modifying engine internals.

(3) Individual physical operators within a GSQ react to mi-
gration command events by deciding how and what state moves
between secondary storage and main memory. This physical-
operator-aware approach works well in practice because every
physical operator knows its own data access patterns and is in
a good position to judge how it manages its own state.

(4) ICE manages cold state efficiently using a log-
structured store (LSS) that stores cold parts of data structures

used by various operators (e.g., join and aggregation). We
introduce the concept of automatic garbage collection within
our LSS that uses event expirations to simplify the (usually
tedious and expensive) log-structured garbage collection pro-
cess. We also leverage other stream characteristics to improve
LSS performance, such as clean/dirty read tracking and delta
updating.

(5) We implemented ICE to work with a test version
of Microsoft StreamlInsight. Extensive experiments with real
and synthetic workloads demonstrate the feasibility of our
techniques and their ability to allow the SPE to scale to large
workloads in M3 applications by efficiently managing cold
data using secondary storage.

This paper is organized as follows. Section II covers
preliminaries, while Section III details two M3 applications.
Section IV introduces the ICE architecture, with Section V fo-
cusing on the cold state manager. Section VI covers migration-
aware stream operators. Section VII contains discussions,
while Section VIII reports experimental results. Section IX
covers related work, and we conclude in Section X.

II. PRELIMINARIES

Streams and Queries A stream is a sequence of events
that each consist of a payload (e.g., user movie rating),
an occurrence time LE (for left endpoint), and a window
expiration time RE (for right endpoint). The interval [LE,
RE) indicates the window or period over which the event
influences output. For “instantaneous” events with no lifetime,
called point events, RE is set to LE+J where ¢ is the smallest
possible time-unit. Sometimes, we may not know the end time
of an event when it is created. Thus, an event may appear as
a start-edge event with lifetime [LE, oco) to indicate that the
event does not expire. This event may later be followed by
an end-edge event that updates the window expiration to an
earlier time (RE). Start and end edges correspond to I-streams
and D-streams in STREAM [9], positive and negative tuples
in NILE [10], and insertions and revisions in Borealis [7].

A continuous query (CQ) submitted by the user is con-
verted into a query plan that consists of a tree of operators,
each of which performs some transformation on its input
streams and produces an output stream. A key operation in
an SPE is the ability to run per-group computations, which is
described next.

Grouped Sub-Query (GSQ). The GSQ operation allows
the user to specify a grouping key (e.g., user id) and a
query sub-plan to execute on each sub-stream corresponding
to events with the same grouping key. In most SPEs, the GSQ
operation is implemented using the following sub-operations:
(1) A group operator reads each event from its input stream,
computes its grouping key, and augments the event with this
key to create a grouped stream as output. (2) The sub-query,
consisting of a DAG of streaming operators, receives and pro-
duces grouped streams. (3) A final ungroup operator removes
the grouping key from events in the stream, ending the grouped
computation. Todays SPEs such as STREAM, Borealis, Storm,
Spark Streaming, IBM System S, Microsoft StreamlInsight,
and Naiad include a GSQ operation, either as native query
constructs (e.g., group-and-apply in Microsoft StreamlInsight)

or by explicitly offering a streaming (key, value) abstraction,
where key serves as the grouping key for the data.

Operators All streaming operators are usually designed to
accept and output grouped streams. For example, an aggregate
operator, that receives events with (group-key, payload) pairs,
maintains per-group-key state, and outputs a stream of data-
batches with per-group aggregates (group-key, aggregate). The
state inside such operators is usually organized by group, with
a hash table. When a new event arrives at the operator, it looks
up and updates the corresponding operator state in the hash
table.

Consider the streaming equi-join operation (StreamJoin),
which outputs the streaming join between its left and right
input events. The output lifetime is the intersection of the
joining event lifetimes. StreamJoin can be implemented with a
streaming grouped cross-product (GCP) operator that operates
over grouped streams; equi-join is identical to a cross-product
over two input streams that are each grouped by the equi-join
key. The implementation of GCP is identical to the well-known
symmetric hash join, where the active events for each input are
stored in a right or left internal join synopses (implemented
as hash tables on the grouping or join key). A common
application of StreamJoin is when the left input consists of
point events in this case, StreamJoin effectively filters out
events on the left input that do not intersect any matching event
lifetime in the right synopsis. Section III provides examples of
this pattern found in real applications. Other grouped stateful
operators include set difference, aggregates (sum, top-k, etc.),
and user-defined operators (see Section VI).

As discussed earlier, ICE tracks and classifies cold state by
group, since it is a natural granularity that fits M3 applications
well. In the next section, we present two example end-to-end
applications that will help better understand our approach.

III. EXAMPLE APPLICATIONS
A. Real-Time Recommender System

A recommender system ingests tuples signifying a user
action in a system (e.g., a Netflix user rating a movie, a
Facebook using “liking” a post), builds a recommendation
model based on these actions, and uses the model to gen-
erate recommendations for users. Systems usually perform
the model-building step offline in batch; for instance, after
ingesting K new user ratings. However, a recommender system
can be built with an SPE to bring the entire recommendation
process “online” by immediately updating the model as the
system ingests new events. We refer to this as a real-time
recommender system [3].

Figure 2 depicts the stream query plan for a real-time rec-
ommender using item-based collaborative filtering. There are
two types of input: (1) update events that represent user ratings
for items and (2) recommend events that represent requests
for recommendations for a target user. All input events are
point events and use a common schema (Timestamp, Streamld,
Userld, Itemld, Rating), with Streamld values of 0 and 1
denoting an update and recommend event respectively (in the
latter case, Itemld and Rating are null). Recommend events can
either be start-edges, which denote the registration of a push-
based recommendation request, or end-edges, which denote de-

streamO stream1 final output
[} 'y 'y
L I
Ungroup Ungroup |7 T Ungroup |7
A 7 f
StreamJoyin (join1) StreamJoin (join2) Top-k
4 . i \ N A
[1 Ungroup |--5
Union [Cosine i g\ P |
X Similarity i L
Window [| | Weighted
1y Select i Select i sum
Select Streamld==1 Select Streamld==0 H subplan
Streamld==0 / Streamld==1 yd H y
X / X / i [H
- 1 ~ 1 Group -
MuItAlcast Mult\lcast I gsq3
,,,,,,,, [T]07 J SNSRI R S— €1 (o]V] « Y S t----| Grou |
'y gsq0 ¥ gsql P gsq2

ratings & requests streamO streaml

Fig. 2: Continuous queries for a recommender system.

registration. One-time requests use a point recommend event.
We describe the approach as two separate phases:

1) Model Building. We first perform a GSQ (gsq0) by Userld

to compute pairs of item ratings by the same user. For each
user, we window their rating events to limit historical rat-
ings from contributing to the current recommender model.
For each rating for item Item1 by user Userl, we perform
a self-join using a StreamJoin (joinl) to produce events
(Userld, Iteml1, Ratingl, Item?2, Rating2) for every pair of
items rated by Userl.
These events from joinl are fed into the next GSQ operator
(gsql) with grouping key Iteml, where we compute the
cosine similarity vector for Item1 (shown as a dotted box
inside the sub-query of gsql). This vector contains, for
each other Item2 that pairs with Item1, an aggregate cosine
similarity score across all users for that pair of items. It
produces a stream of (Item1, SimScoreVector) events. Each
similarity score is computed in an incremental manner
using a combination of sum and project operations. These
events serve as input to a StreamJoin join2 still within
gsql that effectively holds the model in memory (in the
right synopsis) for future scoring during recommendation
generation, which is discussed next.

2) Recommendation Generation. When a new recommen-

dation request event arrives for user Userl, we first send
the event to joinl inside the GSQ gsq0, in order look up
the previously rated items (Iteml) for Userl. The results
are grouped by Iteml in GSQ gsql where, for each item
Iteml1, we look up similarity scores of related items using
join2, and output, for every item Iteml rated by Userl,
the similarity vector of Iteml with every other item (say
Item?2) that is similar to Iteml.
These events are re-grouped by Userld using GSQ gsq?2.
For each user, we group by the second item (Item2) using
GSQ gsq3, and an aggregate (weighted sum) is used to
compute the predicted recommendation score of Item2 for
Userl. Finally, we use a Top-k aggregation operator to
generate the final recommendation for Userl.

Any change to either items rated by the user or to the model
itself causes the query to produce an update to the top-k result.

Discussion. Several points are worth noting from this
example. First, all operations are data-parallel and partitioned
using GSQs. Second, the internal state of sub-queries within
each GSQ can be huge. For example, if we never expire old

ratings, the system needs to hold all historical rating pairs in
memory. Third, the GSQ group keys are natural candidates for
the granularity of cold state detection as there is natural skew in
access characteristics across the group keys (e.g., some items
and users are hot or lukewarm, while the rest are cold). Fourth,
even within a group, there are specific access characteristics
for each operator. For instance, recommend events access the
opposite join synopsis of join2 in a read-only fashion. Further,
point-recommend events do not update the corresponding join
synopsis, whereas edge events update it in a write-only fashion
(they do not need to read prior recommend events). Later
sections will show how ICE generalizes and exploits each of
these features to reduce memory footprint without sacrificing
high performance.

B. Behavioral Targeting Advertising

In prior work we demonstrated how behavior targeted
advertising applications can be expressed using streaming
queries [1]. Briefly, ad impressions, ad clicks, and search data
is used to eliminate data related to spurious users in a bot
elimination phase that uses a GSQ by Userld. The output is
used to generate user behavior vectors (by Userld) that are
joined to click information to serve as input to a dimensionality
reduction and learning sub-plan that groups by ad id. The
resulting models are used to score individual users when
needed, by joining their user behavior vector to the model
and generating an ad click probability for each active ad in
the system. The points noted previously for the recommender
system hold for this application as well, as they do for many
other streaming applications we have encountered in practice.

IV. ICE ARCHITECTURE

Figure 3 depicts the ICE architecture. ICE consists of
two main components, highlighted in light gray. (1) A cold
state manager (CSM) located outside the core stream engine
that tracks group access statistics and classifies cold state
that can be pushed to secondary storage; (2) migration-aware
stateful operators capable of migrating groups to and from
secondary storage. These two components represent a clean
logical/physical split. The CSM deals only with logical group
ids, and knows nothing about their physical implementation.
Meanwhile, operators within a GSQ deal with a group’s phys-
ical implementation. Operators are responsible for migrating
a group to and from secondary storage. The CSM and stream
engine communicate using control events. The stream engine
sends the CSM a “hit” event to register an access for a
group. The CSM sends the stream engine a “migrate” event
to notifying a particular GSQ that a group should migrate to
secondary storage.

Cold State Manager (CSM). The cold state manager
(CSM) is responsible for identifying cold state (i.e., groups)
and notifying the system about which cold groups can migrate
to secondary storage once the system nears its memory limit.
The CSM consists of three sub-components: (1) Access statis-
tics storage maintains lightweight statistics for each group in
the system; (2) A cold state classifier is occasionally invoked
that uses the access statistics to identify cold groups in the
system; (3) A set of event queues (one per GSQ) allow the
CSM to receive group access events and send migration events
to the GSQ branches.

Outside Events

Cold State Manager

y GSQ1
S e

Migration | '
ColdState | 7| Queue 1 Stateful
Classif
| assifer(s) [Wigraton | Operator(s)
0 R

______ [

Per Group 4—' Hit Queue 1 ::

N

Access GSQ
Stateful
Operator(s)

Ungroup

I
v

Fig. 3: ICE architecture

The CSM is a separate component located outside the core
engine. We chose this design for several reasons. First, it
removes the CSM logic from the systems critical path (the
query plan). Second, we can offload CSM duties to a separate
core, socket, or machine if necessary. Third, it allows for a
flexible implementation; pieces of the CSM, such as the cold
state classifier, can be swapped out without modifying the
stream engine internals. We detail the CSM in Section V.

Migration-aware stateful operators. ICE uses a decen-
tralized architecture, where each stateful operator within a
GSQ takes responsibility for migrating state associated with
a group to and from secondary storage. This design choice is
crucial, as individual operators can best leverage their specific
semantics to optimize migration. Logically, upon receiving a
“migrate” control event, an operator must serialize group state
and write it to secondary storage. Likewise, if the operator
must access group state when it is on secondary storage, it
must logically read the state back into memory.

Our approach to stream operators managing state on sec-
ondary storage is different from operators in an RDBMS.
RDBMS operators optimize for the case where most data
is disk-resident. Conversely, stream operators optimize for
memory-based data. We assume that once an operator spills
cold groups to secondary storage, the group will rarely be
accessed again (or at least for a long period of time). If and
when the group does becomes hot again, it is brought back into
memory and will likely remain there for an extended period.

The operators interface with a log-structured storage (LSS)
layer that treats storage as an append-only log. Our LSS design
diverges from traditional log-structured storage [11] in two
ways. (1) Delta updating. We write delta updates (instead of
re-writing full state) in order to reduce write traffic. (2) Self-
cleaning. Since most stream events naturally expire (i.e., have
a finite RE), our LSS automatically garbage collects old state
written prior in the log by simply moving the log head
forward past all expired state. This is much more efficient than

traditional log-structured garbage collection that must reclaim
space by copying active state forward in the log. We discuss
the details of migration-aware operators, the LSS, and several
operator optimizations in Section VI.

V. CoLD STATE MANAGER

The purpose of the cold state manager (CSM) is to identify
cold state and notify the appropriate streaming operators that
this state should migrate to secondary storage. The CSM is
completely separate from the SPE and runs on a separate
thread(s). It knows nothing about physical layout of groups in
the system, it only knows about logical group ids. The CSM
communicates with the stream engine through control events.

The CSM receives notification of a group access by re-
ceiving a hit event on a queue from the GSQ performing
the access. It uses hit events to maintain statistics for each
group in the system (across all GSQs). Once the SPE nears
its memory limit, the CSM performs classification using the
access statistics to identify cold groups. For each cold group
identified, the CSM enqueues a migrate event on an outgoing
queue to inform the appropriate GSQ that it should migrate
the group to secondary storage.

As mentioned in Section IV, the primary CSM components
are event queues, access statistics storage, and a cold state
classifier. In our current design, the CSM maintains separate
queues, statistics, and classifiers for each GSQ in the system.
Our decision to partition the CSM components per GSQ is
primarily due to architectural and threading flexibility. This is
because an SPE can parallelize a query plan by scheduling each
GSQ on a separate thread. We therefore need a way to scale
the CSM to the number of GSQs. For instance, we can use a
single CSM instance on a single thread that services all GSQs.
This configuration is useful if there are a few very active GSQs
in the system. However, we can easily use a dedicated CSM
thread for every GSQ in a plan. This configuration is useful
for large, complex query plans with multiple parallel GSQs. A
hybrid configuration is also possible. The rest of this section
covers the details of each main component in the CSM.

A. Event Queues

The CSM maintains two event queues for every GSQ.
(1) An incoming hit queue, where the GSQ enqueues a
control event containing the logical group-id that signifies an
access to that group. (2) An outgoing migration queue, where
he CSM enqueues a control event for the GSQ containing
the cold group-id that should migrate to secondary storage.
For performance reasons, we batch control events in both
directions.

Maintaining separate events queues for each GSQ in the
system has two advantages: (1) No synchronization. Each GSQ
may run in parallel. Maintaining a single queue for receiving
messages would require a single-reader, multiple-writer model
that requires synchronization if a CSM services multiple
GSQs. Using separate queues allows us to use a single-
reader, single-writer model with synchronization-free queues;
this approach achieves great performance in a memory-bound
system. (2) Direct messaging. Maintaining a single outgoing
queue would require a migration event to flow through the
entire plan until it reached the correct GSQ, whereas separate

queues allows the CSM to directly communicate with the
appropriate GSQ.

B. Access Statistics Storage

The CSM maintains group access statistics for all GSQs
in the query plan. We currently maintain a separate statistics
dictionary for each GSQ containing (group-id, statistics) pairs.
The statistics entry is determined by the cold state classification
technique implemented in the CSM. We do not propose a new
classification technique in this work. Instead, we implemented
and tested three well-known classification schemes from the
caching literature: clock (LRU), least-frequently used (LFU),
and exponential smoothing. Since the CSM is decoupled from
the SPE engine, adding a new classification technique to ICE
is simple.

Each GSQ reports group accesses using a “hit” control
event, as described in the previous section. Upon receiving the
hit event from a GSQ, the CSM finds the statistics dictionary
for that GSQ and updates the appropriate statistic(s). For
example, if the classifier for GSQ uses a clock technique,
the statistics update requires (re)setting a single reference
bit. Meanwhile, a classifier using exponential smoothing must
update the access time and current exponential smoothing
score for a group. For all classification techniques we tested,
the statistics required were lightweight, so we do not believe
statistical maintenance or storage will be a significant overhead
in practice.

C. Cold State Classification

When system memory reaches a given threshold, ICE
invokes the cold state classifier to identify cold groups. ICE
maintains a separate classifier for each GSQ, and the classifi-
cation technique used is interchangeable. This means we can
employ different techniques for each GSQ in the query plan.
As mentioned above, we do not propose a new classification
technique. Our framework is flexible enough to use several
well-known, practical techniques from the caching literature.

The CSM monitors system memory, and invokes a classifi-
cation step once memory nears a predefined system threshold.
The goal of this process is to identify enough cold groups such
that the system reduces its memory usage by a predefined
threshold M%. Given a set of GSQ operators in a query
plan Gy, Go, ..., G,,, we require that each operator migrate
some percentage (of the total M%) of its state to secondary
storage. Our current implementation uses a straightforward
but fair weighted policy, whereby each GSQ must migrate an
amount of state proportional to the amount of total memory it
consumes.

The classification process works in three steps. (1) The
CSM begins by determining the target amount of memory T;
each operator GSQ; must migrate. If there are multiple CSMs
servicing a query plan, this step requires a short communica-
tion round to determine these values. (2) Starting with GSQ1,
the CSM classifies a small batch of the k coldest groups for
that operator. The CSM then sends GSQ; a batch of migration
events containing these cold group ids. The CSM continually
polls memory usage while GSQ; migrates groups. If the last k
groups sent is not enough to reach GSQ;s target T, the CSM
repeats this step, notifying GSQ; that it should migrate k more

groups. (3) Once GSQ; has migrated enough groups to reach
its target T1, the CSM repeats step 2 for GSQ,. This process
repeats until the CSM has notified all GSQs. While relatively
simple, we found this weighted method to be quite effective.
We plan to explore more advanced techniques as future work.
The classification decision is “local” to each GSQ. That is,
we perform classification for a GSQ one at a time. We do not
consider “cross-GSQ” correlation when classifying cold state.

VI. MIGRATION-AWARE OPERATORS

This section describes role and implementation of
migration-aware stream operators within ICE. The operators
are responsible for the physical aspects (e.g., storage, migra-
tion) of cold data.

When an operator receives a migration event from the
CSM telling it which group is “cold”, it must: (1) locate the
group in its in-memory data structure; (2) prepare the group
state (e.g., stream events) for migration, e.g., consolidating
and compressing the state if possible; (3) write the state to
secondary storage. All operators use the log-structured storage
layer to persist state on secondary storage (e.g., disk or flash).
The operator must also remember a marker for each groups
state on cold storage; this is a 8-byte word representing the
offset of the state on the LSS. The operator uses the marker
to seek and read back the state if it needs to be brought back
into memory.

The rest of this section describes the details of the
migration-aware operators. We begin by describing the log-
structured storage layer used to persist state on secondary
storage. We then detail the implementation of the streaming
join, and discuss how to implement other migration-aware
stateful operators.

A. Log-Structured Storage

Each operator interfaces with our log structured storage
(LSS) layer for reading and writing cold state. This section
describes our LSS and two optimizations we implement that
make it efficient in a stream processing scenario: (1) delta
updates: appending only incremental delta records to pre-
viously written state and (2) automatic garbage collection:
taking advantage of event expirations to automatically recycle
the old section of the log. To our knowledge, exploiting event
expirations for automatic garbage collection is a technique
unique to our streaming context.

1) Log Structuring Basics: Log structuring treats storage
as an append log [11]. All writes are performed at the tail of
the log. There are no updates in place, meaning when a new
storage block is written (e.g., page, record), its previous version
(back in the log) becomes inactive, or “garbage”. For this
reason, traditional log-structuring requires garbage collection
to reclaim inactive state. This allows the log to “wrap around”
and recycle file space. As we will see, due to delta updates
and natural event expiration, our LSS can avoid much of this
expensive garbage collection step.

The main advantage of log structuring is write performance
since all writes are sequential. It is also common to use large
write buffers to ensure full use of I/O bandwidth. This is es-
pecially important in our scenario since cold group migrations

t1 expiration t5 expiration

t8 expiration t1 expiration t5 expiration t8 expiration

"""""""""""" . PP AR Jhhblt Ty A"'--I-""-" TTTeee
g I[P [0 1[Ad] ml_hwlllly |’§h||A9||U W—V’Ely I‘éhIIAgllu
Write order s T ------- cavage T. ______
Log head Log tail Log head Log tail

Fig. 4: Log structured garbage collection: delta updates (left), expiration markers (middle), automatic garbage collection (right).

(writes) appear on the critical path within the stream operators.
Large in-memory buffers imply that an operator is unlikely to
block during migration, e.g., waiting for a free buffer, since
buffers drain fast due to sequential I/O.

Log structuring is especially beneficial for flash SSD
storage [12]. Flash does not allow updates in place to physical
pages. It requires a flash translation layer (FTL) to translate
logical page addresses (given by the client) to an internal
physical page address. Thus data on a physical page may
relocate many times. This is an expensive process; however,
log structuring obviates the need for such a mechanism.

2) Delta Updates: One straightforward way to implement
log structuring is to always write full operator state back to
secondary storage (e.g., a complete group synopsis in the case
of join). This approach leads to wastefulness since very little
state may have actually changed, which inflates log usage,
increases write amplification, and also necessitates garbage
collection to clean up old versions earlier in the log.

Instead, our LSS writes deltas that describe incremental up-
dates to group state already on the log. Writing deltas requires
the operator to pass the LSS two parameters: (1) serialized
bytes containing one or more delta record that describe an
update to state already on the LSS, or, if this is the first write,
the entire serialized group state; (2) the existing state’s current
offset on LSS (null if we are migrating a group for the first
time). The LSS writes the bytes along with a back pointer to
the state already on the log (the provided offset). The LSS
returns the offset of the newly written delta bytes that the
operator uses to remember the cold state position in its marker.
This new offset represents the “root” of the state on the LSS.

Figure 4 (left side) provides an example of the LSS after
writing a delta for a group g already on the LSS, where the
offset of Ag is the states “root” on the LSS. Since deltas
cause a group’s state to be chained back on log, reading state
into memory may require traversal of the chain. This traversal
causes random seeks. While this may be a problem on systems
with hard disks, it is less of a problem on flash for which there
is less penalty for random reads [12], [13], [14].

3) Automatic Garbage Collection: A benefit of using log
structured storage in an SPE is that we can take advantage of
event expiration to implement automatic garbage collection.
The basic idea is to mark state on the LSS with a monotoni-
cally increasing expiration timestamp. Ensuring monotonicity
means all state before a marker ¢ is guaranteed to have an
expiration time less than or equal to ¢. Once time advances in
the SPE, the head of the log moves forward past all markers
that have expired, effectively recycling the space once used by
the expired state.

The advantage of this technique is that our LSS does not
need to implement a heavyweight garbage collection mecha-
nism to perform space reclamation. This a very big win, since

garbage collection is an oft-cited drawback of log structured
storage, which requires finding “active” state far back in the
log and copying it forward to the tail.

We note that if events never expire (i.e., they have infinite
right endpoints) then automatic garbage collection is not
possible and we must use traditional log structured garbage
collection. However, many applications (such as those outlined
in Section III) consist of events with large lifetimes (windows)
with finite right endpoints, so automatic garbage collection is
possible in these scenarios.

Implementation details. When an operator migrates group
state (i.e., stored events) to the LSS, it marks the state with
an expiration time t. that is the larger value between (1) the
largest RE of all events in the migrating group, or (2) the
directly previous expiration value written to the LSS. Select-
ing t. this way ensures expiration times are monotonically
increasing on the LSS (a requirement). Expiration markers may
be written at short intervals (e.g., for every group) or larger
intervals (e.g., on every buffer write boundary). Writing at
shorter intervals implies garbage collection advances in smaller
steps more often, and vice versa for larger intervals. Figure 4
(middle) provides an example of our LSS with three expiration
markers, 1, t5, and tg.

Garbage collection occurs automatically once time ad-
vances within the stream engine (e.g., due to a punctuation [9],
[15]). In ICE, once the stream engine generates (or receives)
a punctuation, it notifies the LSS of the current time tn.
The LSS will then move the head of the log forward to the
furthest expiration marker te such that ¢,, < t.. Figure 4 (right)
provides an example of automatic GC for or running example,
where time advances past ¢;. In this case, the log head moves
forward to marker ¢; recycling space used by groups g and h.

With automatic GC, back pointers on delta records may
point past the log head into recycled (garbage) territory. This
is alright, since it is no longer needed in memory since all
recycled state is guaranteed to be expired and no longer
contributes to the query answers. When an operator must read
back state from the LSS, it will only read the valid delta state
in the active section of the log. In essence, one can view our
GC mechanism as automatically retracting expired events from
the LSS. This also has the advantage of avoiding transfer of
useless (i.e., expired) state from the LSS back to memory.

B. Migration-Aware Streaming Join

As a concrete example, this section describes the imple-
mentation details for a migration-aware streaming join opera-
tor. A join is one of the most state-heavy operators in an SPE.
As described in Section II, when a streaming join is inside a
GSQ, it naturally partitions its left and right join synopses
by the grouping key. It performs the join by applying the
hash function to the group key (stored on the incoming event),

which in turn points to the state within the synopsis necessary
to perform the join. Our recommender system application
provides an example of a streaming join (c.f. Section IIT). The
join within the first GSQ operator gsq0 partitions its state by
user id (the grouping key). The state stored for each user is
a set of update events that correspond to user rating history
(e.g., movies previously rated). Update events are stored in
the right and left synopses to generate all pairs of ratings, and
join with all incoming recommend events from the right. Since
recommend events are point events, the right join synopsis does
not hold these events. Likewise, GSQ operator gsql partitions
by Iteml, and stores for every Iteml, the model (similarity
vector) associated with that item. The left synopsis for join2
is empty as it receives only recommend events, whereas the
right synopsis contains these per-item model vectors.

When a join receives a migration control event containing a
group id, it is logically required to migrate all state associated
with that group id from the left and right join synopses. In
our example, the group id for gsq0 represents a user, thus the
join would migrate update events for all infrequent users (i.e.,
ratings history) from the join synopses. Recommend events are
not migrated as they are not present in either join synopsis.
In case of gsql, parts of the model (for infrequent items) get
migrated to cold store by ICE. We next discuss implementation
details, followed by optimizations that improve performance
significantly by making use of operator-specific semantics.

1) Implementation: Each group hash bucket within a join
maps to a dynamic array that stores references to events that
belong to that group. Migrating a group state involves three
main steps. First, we serialize the events from our dynamic
array into a compact byte format. Second, we append the
bytes to an in-memory LSS buffer that is flushed to secondary
storage once full. Finally, we “mark” the entry in the hash
table by replacing the event array with an eight-byte entry. We
use the high order bit of the marker as a flag to notify that
the state is on secondary storage. We use the rest of the bits
to store the location of the bytes on the LSS.

If an access comes for a group that is on secondary storage,
we request its state from the LSS at the offset stored in the
marker. We then read the compressed bytes from secondary
storage and reconstruct the event array in memory. The entry
remains in memory until it becomes cold again.

2) Operator-Specific Optimizations: There are several op-
timizations we implement in order to reduce I/O traffic from
the operators to the LSS and improve performance. We discuss
these optimizations in the context of the streaming join oper-
ator. In general, similar optimizations are possible for other
stream operators as well.

Writing deltas instead of whole state. As discussed
earlier, an operator writes only deltas back to the LSS that
represent incremental changes to a group’s state. Using our
example, say we received a recommend event that caused a
group g to be read from the LSS. Later, two rating events r; and
ro are added to g. Now, if g subsequently migrates, the operator
will only serialize and write r; and ro (instead of g’s entire
state) back to the LSS. This optimization works in concert
with our LSS delta updating functionality. To implement this
optimization, the operator cannot discard its marker containing
the group’s location on the LSS. The operator must pass this

offset to the LSS so that it can “link” the delta back to the
previous state on the log.

Migrating dirty state only. This classic optimization
avoids writing state back to storage that is “clean” (i.e., not
updated). This optimization is especially useful for joins that
store state that is “read-mostly”. This is exactly the case in
our recommender query example for gsq0: a recommend point
event probes for a group g containing user rating history. This
is a read-only access and the point event is not stored in the
opposite synopsis. If all subsequent accesses to g are read only,
we can avoid writing g back to the LSS if it had been written
before. Note that we make the dirty state determination on
a per-synopsis basis, which provides maximum flexibility in
cases where only one of the two synopses is read-mostly (e.g.,
contains slow-changing reference data). In case of gsql, the
right synopsis of join2 contains model information that may
be read-mostly, depending upon how often the model elements
are refreshed.

Add-only. Another optimization we can exploit is knowl-
edge that a group access is “add-only”. In this case, we can
avoid reading the group’s state if it is currently on the LSS
(and not in memory). In this case, we simply add the event as
a delta marker to the in-memory hash bucket. This is especially
relevant to the streaming join since the non-probe side of the
synopsis is add-only.

C. Implementing Other Operators

1) Streaming Set Difference: Similar to streaming join, the
set difference operator takes two streams as input. It produces
an output stream that consists of the left input stream, limited
to time intervals where no matching event exists on the right
stream. Set difference behaves similarly to a join, with left
and right synopses that are symmetrically probed. Thus, all
the optimizations discussed earlier apply.

2) Top-k: Top-k maintains a list of active events sorted by
the ordering attribute for each group. Each incoming event
either adds to or removes from this ordered list. The ordered
list is usually implemented as a red-black-tree. Note that all
active events need to be maintained as any event could later
enter the top-k due to other events expiring (each event may
have a different right endpoint). We use the LSS to store
the red-black-tree associated with individual groups. The delta
write optimization is very useful as the number of active events
in a group may be very large.

Another optimization relevant to top-k is partial state
reconstruction. The basic idea is that when retrieving state
from the LSS, we can push additional predicates that indicate
how much state is sufficient to be brought back into memory
to compute the new top-k result. Assume for simplicity that
ordering attribute values are unique (dropping this assumption
is straightforward, but is omitted for brevity). We track the
value of the current k' ranked active element. If we receive
m new end-edges with the same RE, we only need to bring
back the current top k+m’ elements, where m’ is the number
of new input events with ordering attribute less than that of
the current k*" ranked element. Further, if we receive m new
start-edges with the same LE, we only need to retrieve the top
k-m’ elements from LSS.

-—--e—--- ICE No ICE ----¢---- ICE No Ice ----¢---- ICE No ICE
3500 _ 140 4000
-
@ 3000 —* é 120 —————— oot e @ 3500
= \ - P A e) = LY J————
~ A & ~
5 2500 —% § 100 . 5 o0 % . "
& 2000 —‘;*ﬂ‘*www ¢ 80 7 3
21500 = 60 2 P
e 5 2 2 120
€ 1000 5 7 5 1000
= 500 2 2 H 2w
&
0 Fooo 2 0

Events (Marker = 500K events)

(a) Memory (recommend only)

Events (mark = 500K events)

(b) Throughput (recommend only)

Events (mark = 500K events)

(c) Memory (mixed workload)

Fig. 5: Memory and throughput experiments.

3) User-Defined Operators: The user-defined operator
APIs usually support serialization and deserialization in order
to achieve high availability. This support can be leveraged to
handle cold state for such operators. In addition, we have
optimized delta-serialization APIs with dirty state indication
that, if implemented by query writers, can support our LSS
optimizations discussed earlier.

VII. DISCUSSION

The previous sections discussed ICE and its novel mech-
anisms for identifying and migrating cold data to secondary
storage. Page caching [16] is a well-known technique for man-
aging memory and disk-resident data. This section discusses
why caching is not appropriate for our environment and why
ICE is necessary.

Space overhead. SPEs are built assuming all data is
memory resident. Systems that use page caching (e.g., an
RDBMS) are built assuming data may be paged in or out
at any point in time. Page-based indirection through buffer
pools requires significant space overhead. Pages require extra
metadata (e.g., offset arrays) and may contain unused space
leading to fragmentation. Page organization is especially prob-
lematic for SPEs due to event expiration. Expiring (deleted)
events consistently create free space holes on pages, leading
to unused space and requiring constant defragmentation to
reclaim this space. For this reason SPEs use small event-
based granularities. ICE allows the stream engine to continue
using event-base storage organization since the operators are
responsible for physically organizing and transferring events
to and from cold storage.

CPU Overhead. Paging requires a significant amount
of overhead on the systems critical path to perform page
space management, e.g., updating cache statistics, storage
(re)allocations, and defragmentation. ICE removes cold state
classification from the systems critical path by performing
statistical updates and classification lazily in a separate CSM.
This processing can take place on a separate thread or another
machine, if necessary. ICE adds CPU overhead to the critical
path in two dimensions. (1) Operators enqueueing hit events
for the CSM. While lightweight (i.e., no synchronization),
ICE can easily reduce this overhead further by enqueuing
only a sample of events. (2) Operators receiving a migration
event must write cold state to the LSS. Since the LSS uses
large in-memory buffers this write will have small to modest
overhead. This overhead can be further decreased by making

migration events low priority, for example, by processing N
data events (i.e., events contributing to the query result) for
every migration event. In our experience migration events tend
to be bursty (sent in bulk when the system reaches a memory
threshold). Making migrations low priority will amortize write
overhead over the period between “bursts”.

Classification granularity. Page-based organization man-
ages hot and cold data at the granularity of a page. If used in
a stream engine, events would likely be placed randomly on
free pages as they arrive. In this case, page-based organization
would not be as precise as group organization in classifying
cold state. ICE, on the other hand, classifies cold state at the
granularity of a group. As we have seen, groups naturally
exhibit real-world access skew (e.g., users or items in a
recommender system). Exploiting group access patterns allows
ICE to be precise in the state it classifies and migrates to
secondary storage. This allows the SPE to maintain good
performance while shedding memory overhead.

VIII. EXPERIMENTS

A. Experiment Setup

We implemented ICE to work with a test version of
Microsoft StreamInsight. We ran all experiments on an Intel
Core2 8400 at 3GHz with 16GB or RAM. We use a Seagate
Barracuda 1TB hard disk (7200 RPM over SATA 3 Gb/s
interface). Since our experiments use a hard disk, our numbers
represent a lower bound on ICE performance (e.g., paying
random read penalties that we would not pay when using Flash
SSD).

We make use of two data sets in our experiments. (1)
Synthetic. This data consists of 20M events for 300K groups;
we generate the group id for an access using the Zipf distri-
bution. (2) MovieLens. The rest of our experiments use real
data taken from the MovieLens recommendation system. This
data contains 10M ratings from 70K users for 10,600 movies.
Each rating contains a timestamp, which we use to submit
update events to the system in timestamp order. We generate
recommend events using the following method: 85% of the
events come from 15% of the users (the hot set) while the
remaining 15% come from the 85% of the users (the cold set).
We use the recommender query described in Section III-A to
evaluate system performance on the MovieLens data.

ICE uses the well-known clock replacement policy for
identifying cold groups. We chose clock due to its benefits

---4#---- ICE Nolce

40% ----¢---- ICE Nodce

100 35% — 8
g [

@ 30% —_ T 7
7 80 —pesta Yy §’ 2% — L S . R
- - s N . F 8 ’

§ o pot “md”-‘ p, o) bl & 20% — | N L4 DU
® g 3 > 15% — | 5 — —4
x ¢ g S -
< ! K E 0% — —) t
ER ¥ £ T — s i
'g, | '.," 0% 5 2 4 *{ :Hr’ ’ |, ‘i A}rl "
320 — 1 5% 0% 15% 20% 8 l SLBLY R IR AR byt
£ *“ . a }1? RER LR R ‘f.r_‘ M
f 0 % Updates in W orkload o LRI R uhy it H I

Events (mark = 500K events) Time

(a) Throughput (mixed workload)

(b) Memory savings

(¢) Read 1/0 Performance

Fig. 6: Throughput for mixed workload, memory savings, and read I/O experiments.

in space and memory overhead, as well as relative accuracy
(though this piece pluggable, as mentioned in Section V).

B. Recommender Workload

In this section, we experimentally evaluate ICE using the
real MovieLens data run on the streaming recommender query
described in Section III-A. We compare our streaming system
with ICE and without ICE (abbr. No ICE). Our primary metrics
are throughput and memory usage for both implementations.
For both workloads, we first initialize the system by feeding
7M update events (out of 10M) to build an initial recommender
model. We then start measuring performance for a given work-
load, which is a mix of both update events and recommend
events.

1) Recommend-Only Workload: We begin by evaluating a
recommend-only workload where we only send recommend
events to the system. We set the memory limit to 2.6GB. This is
sufficient to store the hot set of groups (recall from Section 3.1
that a major overhead is storing per-user rating history in GSQ
gsq0). Figure 5a reports the memory usage of both approaches.
Over time, the No ICE method memory usage remains static,
this is expected since new state (i.e., ratings) does not enter
the system. ICE initially migrates roughly 1.5GB of cold state
to secondary storage (left-hand downward slope). After this
migration, memory usage is stable, meaning ICE is capable of
enforcing the memory limit imposed on it. This is significant,
since the gap between ICE and No ICE represents a 41% drop
in memory usage.

Figure 5b reports the throughput for this experiment.
Since ICE requires an initial bulk migration, the throughput
is initially well below No ICE. After the initial migration
is complete, however, ICE equals and eventually surpasses
the throughput performance of No ICE. We believe this
performance improvement is due to better use of the memory
hierarchy leading to better cache locality within the (grouped)
streaming join.

2) Mixed Workload: This experiment evaluates ICE using a
mixed workload of both update events and recommend events.
The update to recommend ratio is 1:9. Figure 5c reports the
memory usage for both approaches. Memory usage for the No
ICE approach increases during query runtime as new rating
state enters the system. Meanwhile, ICE initially migrates cold
state to secondary storage to meet its memory limit (left-hand
side of graph). During runtime memory usage increases and

nears the limit. The jump in the middle of the graph represents
ICE performing cold state migration again to maintain the
limit. On average, ICE reduces memory usage by 28% for
this workload.

Figure 6a reports the throughput for both approaches.
The throughput for the No ICE approach slowly decreases
during query runtime. This performance decrease is due to the
addition of update events to the workload. As more ratings are
added to the system, the operators must accommodate this state
by increasing capacity of their internal data structures, leading
to poorer performance. ICE shows an initial drop in throughput
due to its initial migration. However, its throughput eventually
matches that of No ICE. The drop in throughput during the
middle runtime is due to the second migration. We note that
this drop represents the worst-case degradation in throughput
since our prototype currently processes all migrations within
each operator before processing new events; this can be greatly
improved by alternating migration and data events in within the
operator. ICE throughput quickly recovers from its migration
and its performance eventually surpasses the No ICE approach.
Like the recommend-only experiment, this improvement is
again to better use of the memory hierarchy.

3) Effect of Varying Rating Updates: The previous exper-
iments show that ICE is capable of maintining performance
commensurate to that of a No ICE approach while using less
memory. We now further explore memory savings as the state
update rate of a workload increases. This experiment increases
the percentage of update events in the recommender workload
and reports the memory usage difference at the end of the run
(workloads are run for the same amount of time). Figure 6b
reports the results. As the number of rating events increases,
a stream system without ICE must maintain more state during
the workload runtime. The benefit of ICE is magnified as the
update rate increases, as it is able to migrate cold state to
secondary storage, while the No ICE approach requires holding
new state entirely in memory. For each run, the throughput of
ICE remains on par with (and sometimes surpasses) No ICE.

4) I/O and CPU Usage: This section studies the I/O and
CPU overhead caused by ICE. These experiments employ a
performance monitor during the run of the mixed workload
that samples disk reads and CPU usage.

Read 1/0. Figure 6¢ plots the disk reads per second for
both approaches. Again, the No ICE process does not perform
actual reads, so its plot represents the ambient read traffic in

----o---- ICE Nodce

60
g 50 L 2 ? L 3 o
40 _?%f E“ ?
8 LTt AR . G & 0 W SREHITYSINE S
2 30k N N AR EBAR SR Bate)
g O N . e
o
& 20
ENTY

0

Time

Fig. 7: CPU usage.

Average Disk Writes/Sec
30.156
84.464

ICE with Read-Only Synopses
ICE without Read-Only Synopses

TABLE I: Effect of read-only join synopses.

the system. ICE performs occasional disk reads to perform
lookups and updates on groups that had previously migrated,
however its read rate is not much larger than No ICE. On
average ICE performs 0.734 reads/second over the lifetime of
the workload. This is acceptable compared to No ICE with
that performs 0.311 reads/second on average. This low read-
rate also implies ICE correctly identifies cold groups, since
very few cold groups must be brought back into memory.

CPU. Figure 13 plots the CPU usage for both approaches.
There is no large divergence between the two approaches. No
ICE exhibits an average CPU usage of 29.42% over the entire
run, while ICE exhibits usage of 31.26% on average. The CPU
overhead for ICE involves cold data identification logic (i.e.,
managing the clock), as well as extra overhead to serialize
groups for I/O. We consider this CPU overhead acceptable.

C. Optimizations

1) Read-only Join Synopses: To further test the overhead
of the read-only optimization (Section VI), we ran the mixed
recommender workload on ICE with the read-only join syn-
opsis optimization both enabled and disabled. Table I reports
the average write I/Os per second observed over the lifetime
of the workload. This optimization is able to reduce disk write
I/0 by 64%. We consider this a very good improvement and
a cornerstone of the good overall performance of ICE.

—&— No Optimization
6000

With Optimization

@ 5000

E /
o 4000

£ 3000

S /

S 2000 -

= A

0 v
0 10 20 30 40 50 60 70 80 90 100

% Entries Updated

Fig. 8: Effect of delta updates.

2) Effect of Delta Updating: This experiment tests the
efficiency gains of delta updating our log-structured store
instead of writing whole state on every migration. To isolate
the effects of delta updating, we perform a micro-benchmark
that fills a join synopses with 5M ratings spread across 70K
users, where each user corresponds to a group partition. It
then forces all groups to migrate to secondary storage and
subsequently reads them all back into memory using a read-
only mode. It then updates Y% of the groups (y-axis) and
measures the time to migrate (write) all groups back to storage
(x- axis). Figure 8 provides reports this migration performance
for ICE with and without the delta write optimization. At 0%
updates, there is no write I/O overhead due to the read-only
optimization. As the update percentage, the effect of writing
deltas instead of whole pages is apparent in the performance
divergence between the two approaches. On average, the delta
write optimization leads to a 30% performance improvement
over the baseline.

IX. RELATED WORK

Page Caching. Page caching [16], [17] is a well-known
method for managing cold data. However, as discussed in
Section VII, page caching is not a good solution for our setting
for the following reasons reasons. (1) Space overhead: stream
systems are main-memory optimized and cannot tolerate page-
based indirection for performance reasons; (2) CPU overhead:
adding page-based (re)allocation and defragmentation over-
head to a stream systems critical path leads to unpredictable
performance; (3) Sub-optimal organization: page-based organi-
zation assigns data randomly to pages as it enters the system,
which leads to sub-optimal separation of cold and hot data.
ICE avoids all of these pitfalls.

Delta Updating. Delta updating on log-structured storage
has been explored in the context of access methods [13], [14].
We use delta updates in the context of managing events on our
LSS. Writing deltas to LSS allows us to implement a novel
automatic garbage collection scheme that avoids the pitfalls of
traditional log-structured garbage collection.

Non-page caching techniques. Web caching [18] classi-
fies and caches data at various (non-page) granularities (e.g.
web page, arbitrary objects). This work creates various novel
caching techniques and policies that incorporate both docu-
ment size and network latency. There has also been recent work
on managing cold data in main-memory OLTP engines [19],
[20], [21]. This work takes advantage of OLTP access patterns
in order to partition cold and hot data at record granularity. Our
work differs dramatically by studying cold state and scalability
in SPEs that have very different query semantics than web
caches or OLTP engines. Our work also classifies and migrate
state at a group granularity that is unique to SPEs.

Log-structured storage. Log-structured storage [11] was
originally applied to file systems to avoid random writes and
maximize disk write bandwidth. The ICE storage layer deviates
from traditional log structuring in two novel ways. (1) Logical
delta updates: Instead of (re)writing whole pages to the log
tail, ICE writes only logical delta updates signifying group
state changes since the last write. This optimization greatly
reduces write traffic and increases the number of updates
that fit into a single write buffer. (2) Automatic garbage

collection: ICE takes advantage event expiration in SPEs (i.e.,
finite REs) in order to naturally allow events expire on the
log and thereby reclaim log space. Thus in most cases, ICE
avoids the expensive garbage collection process common in
log-structuring.

Scaling Stream Processing Systems. ICE addresses the
fundamental problem of scaling an SPE in the face of memory
pressure. Existing classes of techniques to address this problem
include: (1) Multi-machine scale out [22], [23]. While scale
out solutions for SPEs are important, we view this work as
orthogonal to ours; we provide the benefit of higher scala-
bility on a single node by better balancing CPU, memory,
and I/O resources on the machine, and exploiting secondary
storage and the access characteristics common in our target
applications. (2) Leveraging distributed storage. Systems such
as MillWheel [24] allow users to offload stream state to a
distributed key-value store. In contrast, we focus on efficiently
leveraging local storage (such as SSD), and provide a higher
level of abstraction, with physical operators that manage cold
state automatically using a cold state manager. (3) Load shed-
ding [25], [26]. This method drops stream events to manage
load, thereby producing approximate results. For complex big
data applications, it can be difficult to estimate the effect
of dropped tuples on accuracy. Further, users may wish to
get exact answers in many cases. ICE migrates infrequently
accessed state (groups) to cheaper secondary storage, allowing
exact result generation. ICE is particularly useful in a cloud
setting, where economical and balanced use of hardware is
desirable. In case applications can tolerate dropped tuples,
existing load shedding techniques can be applied alongside
ICE for better scalability.

Stream queries accessing historical data. Most SPEs
interface with secondary storage (or an RDBMS) in order
to query historical data [7], [27]. In this scenario, ad-hoc
queries can access (expensive) historical data at any time.
Thus, techniques such as data reduction [8] have been proposed
to improve access to historical data. Our scenario differs
significantly. ICE helps SPEs to scale by offloading cold query
internal state to secondary storage, thereby trading off memory
for I/O.

X. CONCLUSION

A stream processing engine (SPE) enables efficient exe-
cution of big data applications such as targeted advertising,
recommender systems, risk analysis, and call-center analytics.
Such applications require the SPE to maintain and process
massive amounts of in-memory state. This paper proposes
ICE, a novel framework that allows an SPE to scale to
the needs these memory-bound applications. ICE exploits the
natural access skew exhibited by many of these applications
by dynamically offloading state to secondary storage. We
implemented ICE in a commercial SPE. Experiments using
both real and synthetic workloads reveal ICE reduces memory
footprint without sacrificing performance, making it a viable
solution for many data-intensive application scenarios.

REFERENCES

[1] B. Chandramouli et al., “Data Stream Management Systems for Com-
putational Finance,” IEEE Computer, vol. 43, no. 12, pp. 45-52, 2010.

(2]

(3]

(4]

(6]

(71

(8]

(9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Chandramouli, J. Goldstein, and S. Duan, “Temporal Analytics on
Big Data for Web Advertising,” in /CDE, 2012, pp. 90-101.

B. Chandramouli, J. Levandoski, A. Eldawy, and M. Mokbel, “Stream-
Rec: A Real-Time Recommender System,” in SIGMOD, 2011, pp.
1243-1246.

B. Gedik, K. Wu, P. S. Yu, and L. Liu, “Adaptive Load Shedding for
Windowed Stream Joins,” in CIKM, 2005, pp. 171-178.

N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stone-
braker, “Load Shedding in a Data Stream Manager,” in VLDB, 2003,
pp- 309-320.

“MovieLens Datasets.
http://grouplens.org/datasets/movielens/.”

D. J. Abadi et al., “The Design of the Borealis Stream Processing
Engine,” in CIDR, 2005, pp. 277-289.

S. Chandrasekaran and M. J. Franklin, “Remembrance of Streams Past:
Overload-Sensitive Management of Archived Streams,” in VLDB, 2004,
pp- 348-359.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and Issues in Data Stream Systems,” in PODS, 2002, pp. 1-16.

M. A. Hammad et al., “Nile: A Query Processing Engine for Data
Streams,” in /ICDE, 2004, p. 851.

M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” in SOSP, 1991, pp. 1-15.

B. K. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM Space
Skimpy Key-Value Store on Flash-based Storage,” in SIGMOD, 2011,
pp. 25-36.

J. Levandoski, D. B. Lomet, and S. Sengupta, “The Bw-Tree: A B-Tree
for New Hardware Platforms,” in /ICDE, 2013, pp. 302-313.

——, “LLAMA: A Cache/Storage Subsystem for Modern Hardware,”
PVLDB, vol. 6, no. 10, pp. 877-888, 2013.

D. Maier, J. Li, P. A. Tucker, K. Tufte, and V. Papadimos, “Semantics
of data streams and operators,” in /CDT, 2005, pp. 37-52.

E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” in SIGMOD, 1993,
pp- 297-306.

T. Johnson and D. Shasha, “2q: A low overhead high performance buffer
management replacement algorithm,” in VLDB, 1994, pp. 439-450.

M. Rabinovich and O. Spatscheck, Web Caching and Replication.
Addison-Wesley, 2001.

J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik,
“Anti-Caching: A New Approach to Database Management System
Architecture,” PVLDB, vol. 6, no. 14, pp. 1942-1953, 2013.

A. Eldawy, J. J. Levandoski, and P. Larson, “Trekking Through Siberia:
Managing Cold Data in a Memory-Optimized Database,” PVLDB,
vol. 7, no. 11, pp. 931-942, 2014.

F. Funke, A. Kemper, and T. Neumann, “Compacting Transactional Data
in Hybrid OLTP & OLAP Databases,” PVLDB, vol. 5, no. 11, pp.
1424-1435, 2012.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik, “Scalable Distributed
Stream Processing,” in CIDR, 2003.

B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy, “A Platform
for Scalable One-Pass Analytics using MapReduce,” in SIGMOD, 2011,
pp- 985-996.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-
tolerant stream processing at internet scale,” in Very Large Data Bases,
2013, pp. 734-746.

B. Gedik, K. Wu, P. S. Yu, and L. Liu, “Adaptive Load Shedding for
Windowed Stream Joins,” in CIKM, 2005, pp. 171-178.

N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stone-
braker, “Load Shedding in a Data Stream Manager,” in VLDB, 2003,
pp- 309-320.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. A.
Shah, “TelegraphCQ: Continuous Dataflow Processing,” in SIGMOD,
2003, p. 668.

