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ABSTRACT
Today, businesses rely on efficiently running analytics on large
amounts of operational and historical data to gain business insights
and competitive advantage. Increasingly, such analytics are run us-
ing cloud-based data analytics services, such as Google BigQuery,
Microsoft Azure Synapse, Amazon Redshift, and Snowflake. These
services persist and process data in compressed, columnar formats,
stored in large blocks, each of which contains thousands or millions
of records. For these services, disk I/O from (remote) cloud storage
is often one of the dominant costs for query processing. To reduce
the amount of I/O, services often maintain per-block metadata, such
as zonemaps, which are used to skip blocks that are irrelevant to the
query, leading to lowerqueryexecution times.However, theeffective-
ness of block skippingvia zonemaps is dependentonhowthe records
are assigned to blocks. Recent work on instance-optimized data lay-
outs aims to maximize block skipping by specializing the block
assignment strategy to a specific dataset and workload. However,
these existing approaches only optimize the layout for a single table.

In this paper, we proposeMTO, an instance-optimized data layout
framework that determines the blocking strategy for all tables in
a multi-table dataset in the presence of joins, such as in a star or
snowflake schema common in real-world workloads. MTO takes
advantage of sideways information passing through joins to jointly
optimize the layout for all tables, which results in better block skip-
ping and hence reduced query execution times. Experiments on a
commercial cloud-based analytics service show that MTO achieves
up to 93% reduction in blocks accessed and 75% reduction in end-to-
end query times compared to state-of-the-art blocking strategies.
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1 INTRODUCTION
To efficiently process increasingly larger volumes of data, modern
cloud-based data analytics services use a variety of techniques to
reduce data movement and data access. One standard technique is
to use columnar storage to avoid accessing columns that are not

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457270

Figure 1: Zonemaps over three data blocks. Using zonemaps,
the first query is able to skip blocks 1 and 2, whereas the
second query cannot skip any blocks.

relevant to a query. Data is often persisted in remote cloud storage,
such as Amazon S3, and accessed by “compute nodes” during query
processing. These systems group data records into large blocks, each
with hundreds of thousands or millions of records in order to maxi-
mize compression ratios. Tomaximize throughput andminimize I/O
operations per second, during query processing, a block (or a subset
of columns fromablock) is the smallest unit of I/O fromcloud storage.

To avoid accessing blocks that are not relevant to a query, per-
block metadata, which is often cached in memory, is used to skip
blocksduringqueryprocessing.Themost common formofper-block
metadata is zone maps [6, 8, 34, 40], which store the minimum and
maximumvalue for each column in a data block. For example (Fig. 1),
if a block’s zone map shows that the records in the block span dates
fromMarch toApril 2020, and the query filters for recordswith dates
in January 2020, then this particular block does not have to be read
from storage (i.e., can be skipped) during this query’s execution.

Zone maps are cheap to maintain and potentially useful, but their
effectiveness at block skipping is highly dependent on how records
are assigned to blocks (i.e., the data layout). By default, most systems
usually sort each table bya certain sort column (e.g., thedate column),
and will place contiguous chunks of records into the same block.
Under this basic blocking scheme, queries that filter over the sort
columnwill be able to skip blocks basedon zonemaps, but filters over
other columns do not provide much skipping opportunity (Fig. 1). Z-
order [35] is a multi-dimensional sorting technique, often deployed
in practice for its simplicity. However, for Z-order to be effective
for block skipping, the columns on which to define the Z-order and
their relative order must be manually and carefully selected, and
poor tuning can actually result in degraded performance.

To overcome the shortcomings of existing data layout techniques,
the idea of instance-optimized data layoutswas recently proposed.
These approaches “learn” a specialized blocking scheme (i.e., a sort
order) that achieves high block skipping performance for a specific
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dataset and workload [11, 28, 36, 57]. Experiments on synthetic and
real-world datasets and workloads show that instance-optimized
data layouts can be orders of magnitude better in block skipping
compared to simple sort-baseddata layouts aswell asmore advanced,
fine-grained data skipping techniques [48, 49]. The key idea is to use
the knowledge of the data distribution and query workload (e.g., the
specific filter predicates) to custom-fit the data layout. However, ex-
isting instance-optimized layouts can only optimize a single table’s
layout, for a query workload that only queries that table. In practice,
analytics workloads typically contain many tables and the queries
use diverse join patterns, such as in a star or snowflake schema.

One naïve approach to optimizing the layout for a multi-table
dataset is to independently optimize each table’s layout using an
existing instance-optimized approach. However, as we show later,
this approach does not perform significantly better, as it does not
exploit knowledge about the joins. In this paper, we propose MTO
(Multi-Table Optimizer), the first instance-optimized data layout
framework for optimizing whole datasets. Our key idea is to pass
additional information about joins, which we refer to as sideways
information passing (SIP), through join-induced predicates, to jointly
optimize the layout for all tables, simultaneously.This idea is inspired
by prior work on SIP [22]; we discuss similarities and differences in
Section 3.1. Furthermore, existing instance-optimized layout tech-
niques [11, 36, 57] must re-optimize the entire layout in response
to changes in the query workload. In contrast, MTO gracefully re-
sponds to workload changes through partial layout reorganization.
We summarize our contributions as follows:

(1) We propose MTO, the first instance-optimized data layout
framework for multi-table datasets. MTO aims to minimize
the overall number of blocks accessed in an analytics work-
load with join queries, which are common in practice.

(2) We introduce join-induced predicates, used in MTO to pass
information through joins.Wepresent algorithms that exploit
join-induced predicates to “learn” better data layouts.

(3) We introduce further practical techniques to ensure thatMTO
scales to larger datasets and query workloads and adapts to
workload shift and data changes.

(4) WeevaluateMTO,both in simulationsandby integratingwith
a commercial cloud-based data analytics service to measure
end-to-endgains.We compareMTOagainst existing instance-
optimized layouts and user-tuned blocking schemes.

In the rest of this paper, we provide background (Section 2), in-
troduce MTO’s high-level design (Section 3), examine the details of
MTO’s algorithms (Sections 4 and 5), present experimental results
(Section 6), review relatedwork (Section 7), and conclude (Section 8).

2 CURRENT BLOCKINGAPPROACHES
As shown in Fig. 1, zone maps are useful for skipping irrelevant
blocks during query execution, but their effectiveness depends on
the physical layout of the data among blocks (i.e., the sort order). We
now describe existing approaches for data layout.

Sort Key. A common approach used in practice is to sort each ta-
ble’s data by a particular column. For example, by sorting on times-
tamp/date, any queries that only filter over the past day of data can
skip all blocks that contain data that is older than one day.

Figure 2: (1) Qd-tree defines blocks using cuts. (2) Qd-tree is
used offline to route records to the blocks they are stored in
and (3) is used online to determine which blocks need to be
accessed during query execution.

Z-ordering. One drawback to the sort key approach is that only
queries that filter over the sort key column can benefit from block
skipping. Z-ordering [35] “sorts” data over multiple columns simul-
taneously, and it is supported by several commercial systems [9, 60].
However, Z-orderingmust be tuned carefully to achieve high perfor-
mance. For example, a DBAmust decidewhich columns to include in
theZ-order, andwhether togivemoreweight to certain columnsover
others. A poorly tuned Z-ordering can degrade block skipping per-
formance compared to the sort key approach. Even when properly
tuned, Z-ordering underperforms instance-optimized approaches.

Instance-optimized Layouts Instance-optimized layouts are spe-
cialized to perform well (e.g., achieve low overall query runtime) on
a particular dataset and workload [11, 28, 36, 57]. By purposefully
overfitting the layout for a specific dataset and workload, instance-
optimized layouts are able to outperform existing approaches on
that specific instance (dataset and workload).

DrawbackofCurrentApproachesOnemajor drawback of all the
approaches described above is that they optimize the layout for a sin-
gle table. In a datasetwithmultiple tables, existing approacheswould
optimize each table’s layout independently. By not considering the
layout of all tables jointly, existing approaches do not maximize
block skipping performance, as we show later through experiments.

2.1 Qd-tree
We now describe qd-tree [57], an existing instance-optimized data
layout framework for single tables, which we use as a fundamental
building block in our work. The intuition behind qd-tree is to tailor
the block assignment strategy for a given query workload to reduce
the number of blocks accessed when running that workload. For
example, consider a workload consisting of a single query:
SELECT * FROM table
WHERE X > 10 AND Y IN (1, 2, 3)

Let us divide the records of table into those that satisfy X > 10 and
those that do not. If we assign each set of records to a separate group
of blocks (e.g., records that satisfy thepredicate are assigned toblocks
1 and 3, while records that do not go in blocks 2 and 4), then during
query processing, we only need to access the blocks corresponding
to the “satisfying” set. We can apply similar logic to divide and block



the records based on whether they satisfy the other predicate, Y IN
(1, 2, 3). However, if we sort/block the records based on their
value in some unrelated column (e.g., Z), the querywill likely need to
access all blocks. This example illustrates that by blocking based on
the specific filter predicates that appear in the query workload, we
can reduce the number of blocks accessed during query processing.

We now provide a high-level overview of qd-tree, which we de-
scribe in more detail in the following subsections. The qd-tree work-
flow is as follows (Fig. 2):

(1) The input to the workflow is a table and workload of queries
that the user expects to run on the table. Using (a sample of)
the table andqueryworkload, construct a decision tree (which
we call a qd-tree) that roughly evenly splits the records of the
(sampled) table into data blocks (Section 2.1.3).

(2) Offline, use the qd-tree to assign the table’s records to blocks.
This process is called routing a record (Section 2.1.2).

(3) At query execution time, use the same qd-tree to determine
which blocks the query needs to access (and therefore which
data blocks can be skipped). This process is called routing a
query (Section 2.1.2).

2.1.1 Qd-tree Structure. The qd-tree (Fig. 2) is a binary decision tree.
Each node corresponds to some subset of records in the table. The
root node corresponds to all records in the table. Each inner node
contains a filter predicate, which we call a cut. The node’s cut is used
to divide its subset of records into two smaller subsets, one with
records that satisfy the cut and the other with records that do not.
The left child inherits the “yes” subset, and the right child inherits
the “no” subset. The leaf nodes of the qd-tree correspond to data
blocks. That is, the subset of records corresponding to a leaf node
are assigned to the same data block.

2.1.2 Qd-tree Usage. We can use a qd-tree for both offline block
assignment and online query processing. Given a qd-tree and a table,
we route each record in the table through the qd-tree to assign it to
the data block that it will be stored in. For example, consider the first
record in Fig. 2. We route this record 𝑅 through the qd-tree, from
root to leaf. The root node’s cut indicates that records that satisfy
cpu < 90 are inherited by the left child, while records that do not
satisfy cpu < 90 are inherited by the right child. Since 𝑅 does not
satisfy the root node’s cut, we route 𝑅 to the right child. The right
child is a leaf node, and therefore we assign 𝑅 to block 3. In the same
manner, every record is assigned to a block.

At query execution time, we use the qd-tree to determine which
blocks need to be accessed. For example, consider the first query in
Fig. 2. We route this query through the qd-tree, from root to leaf. At
the root node, the query only filters for records that could appear
in the left child (i.e., any records that do not satisfy the cut cpu < 90
are irrelevant), so we route the query to the left child. At this second
node, the query could filter for records that appear in either child
(i.e., records that satisfy and do not satisfy mem > 1G could both be
relevant), so we route the query to both children. We continue to
recurse in this manner, and at the end, we find that the query must
access blocks 0, 1, and 2. Note that while records are always routed
to exactly one block, queries can be routed to multiple blocks.

2.1.3 Qd-tree Construction Algorithm. We take the same greedy
approach to construction as [57]: given a table and query workload,

begin with all the records in a single block, i.e., the qd-tree has a sin-
gle root node that contains all the records. In each iteration, we split
a leaf node into two child nodes by applying a cut. Cuts are chosen
from the set of candidate cuts, which is the set of filter predicates
that appear in the query workload. For example, in the single-query
workload described at the beginning of this section, there are two
candidate cuts: X > 10 and Y IN (1, 2, 3). When choosing the cut
for a node,weuse the one amongst the candidate cuts thatmaximizes
the number of records skipped by the resulting qd-tree over the given
workload. We continue iterating until all leaf nodes have reached
some desired size, measured by the number of records falling in the
data block represented by that leaf node.

3 MTOOVERVIEW
In this section, we provide an overview of our approach, calledMTO
(Multi-Table Optimizer), that creates instance-optimized data lay-
outs for multi-table datasets. For a multi-table dataset and a query
workload, the goal of MTO is to learn an instance-optimized layout
thatmaximizes block skipping for that specific dataset andworkload.
MTO consists of two parts: (1) a mapping of records to blocks, where
eachblockhas roughly the samenumberof records,whichwecall the
block size1. A block can only contain records from a single table. (2)
At execution time, given a query, a method to identify which blocks
need to be accessed (and by proxy, which blocks can be skipped).

We first introduce the key idea that differentiatesMTO from exist-
ing instance-optimized approaches: sideways information passing
using join-induced predicates. We then describe MTO’s end-to-end
workflow.We present more details in Sections 4 and 5.

3.1 Sideways Information Passing
Existing single-table layout approaches are sub-optimal in themulti-
table case because they do not take advantage of sideways infor-
mation passing between tables. To provide intuition, we use the
following running example (Fig. 3): let the block size be 1M records.
Let our dataset have two tables: Table A with 1M records, and Table
Bwith 8M records. All of Table A’s records will fall in the same block,
so the sort order for Table A does not impact block skipping. We
are only interested in the blocking strategy for Table B. Consider a
workload consisting of queries similar to the following:
SELECT COUNT(*) FROM A, B
WHERE A.KEY = B.KEY AND A.X < 100 AND B.Y > 200

By pushing down the two filter predicates, Table A’s zone maps will
be able to skip blocks based on the predicate A.X < 100, and Table
B’s zonemapswill be able to skip blocks based on B.Y > 200. A DBA
determining each table’s layout independently would sort Table B’s
data by Y. Then the execution engine will use zonemaps to skip over
B’s blocks where𝑌 ≤ 200, as shown in Fig. 3.

However, we can achieve even more block skipping using side-
ways information passing. We know that any records of the joined
relation that have𝐴.𝑋 ≥ 100 are irrelevant. Therefore, the records
in B that produce irrelevant records when joined with A are them-
selves irrelevant. By grouping together the records of B based on
whether the join with A would produce relevant records, we can
further increase block skipping. Essentially, Table B’s zone maps are
1Onmost cloud analytics services, the block size is preset automatically by the service
and cannot be changed by the user, so we do not explore variable-sized blocks.



Figure 3: By taking advantage of sideways information
passing to optimize the data layout, we can increase block
skipping. Only blocks in the shaded regions are read.

Table 1: Join-induced predicate terminology example.

Term Definition Running Example

Simple predicate Predicate over one table A.X < 100

Join-induced Predicate over columns in A.BKEY IN (SELECT B.BKEY
predicate/cut multiple tables, composed of FROM B WHERE B.CKEY IN (

nested semi-join subqueries SELECT C.CKEY FROM C
WHERE C.Z > 200))

Literal cut Result of evaluating subqueries A.BKEY IN (3, 14, 159)
in a join-induced cut

Source table Table with the original predicate C
Target table Table whose predicate is induced A
Source cut Source table’s predicate C.Z > 200
Induction path List of tables and join columns C→CKEYB→BKEYA

connecting source to target
Induction depth Length of the induction path 2

skipping blocks based on two predicates: B.Y > 200, as well as a new
join-induced predicate:B.KEY IN (SELECT A.KEY FROM A WHERE A.X
< 100). Table 1 defines relevant terminology through an example.
We explain join-induced predicates in more detail in Section 4.1.

3.1.1 Relation to Existing Approaches. The idea of join-induced
predicates is similar to some existing techniques. Semi-join
reduction [3, 17] uses sideways information passing at execution
time to filter rows (e.g., construct a bitmap over the build input of
a hash join and use it to filter rows on the probe input before they
reach the join). In contrast, join-induced predicates inMTO are used
in an offline optimization stage to determine the data layout and
introduce negligible overhead during query execution.

Similar to semi-join reduction, data-induced predicates (diPs) [22]
pass information about the blocks selected by a predicate (e.g.,
the zone maps over selected blocks), through joins, which induces
a predicate on the joined table’s join column that can be used
to skip blocks on the joined table. diPs are applied during query
optimization, which avoids the overhead of performing sideways
information passing at execution time and gives the optimizer extra
information with which to find better plans. However, diPs are only
beneficial to block skipping when certain conditions about the data
layout are met, most importantly that the join column values in the
blocks that satisfy a predicate contain only a small portion of all
possible join columnvalues, otherwise the inducedpredicatewill not
be selective enough to skip blocks when applied to the joining table.
In contrast, MTO explicitly constructs the block layout to maximize
opportunities for skipping blocks during execution. We show in
our evaluation that this difference allows MTO to outperform diPs.

Figure 4: (1) In offline optimization, MTO produces a layout
(a qd-tree per table) given a dataset and query workload. (2)
MTO assigns records to blocks and stores them. (3) In online
query execution, MTO skips blocks based on the layout.

Figure 5: MTO optimization uses the query workload and
dataset to create one qd-tree per table.

3.2 MTOWorkflow
Our workflow (Fig. 4) has two components, corresponding to the
two parts described at the beginning of this section: (1) offline op-
timization, and (2) online query execution.

3.2.1 Offline optimization. The MTO optimization algorithm takes
a multi-table dataset and a query workload as input and creates one
qd-tree per table,whichwill determine the data layout for that table’s
records. The algorithm has the following steps (Fig. 5):

(1) Do the following for each query (Fig. 5 shows the workflow
for one particular query):

(a) Extract all simple predicates (Table 1) from the query, and
group them based on which table they filter. In Fig. 5, the
example query contains two simple predicates: A.x < 100
and B.y > 200. Therefore, A.x < 100 is extracted for Table
A and B.y > 200 is extracted for Table B.

(b) Pass the simple predicates extracted in Step 1a through
joins to create join-induced predicates. In the example, the
simple predicate B.y > 200 is passed though the join to Ta-
bleA,which produces the join-induced predicate A.key IN
(SELECT B.key FROM B WHERE B.y > 200), which filters
Table A. Similarly, the simple predicate A.x < 100 passes
through the join to Table B to create a join-induced predi-
cate on Table B. For queries withmore complex join graphs
(e.g., TableA joinswithTableB,which joinswithTableC), a
simple predicate can be passed through multiple joins (e.g.,



Figure 6: At query time, MTO uses the per-table qd-trees
to determine which blocks to access from each table. This
query only needs to read block 1 fromTable B.

a simple predicate on Table A is passed through Table B to
Table C and produces a join-induced predicate on Table C).

(c) For each join-induced predicate, evaluate any subqueries to
obtain the literal cut. In the example, running the subquery
(SELECT B.key FROM B WHERE B.y > 200) returns the
set (1, 4, 9), so the literal form of the join-induced cut
over Table A is A.key IN (1, 4, 9).

(2) For each table independently: feed the table and overall
query workload into the qd-tree construction algorithm
(Section 2.1.3). The predicates over that table extracted in Step
1 (which could be either simple predicates or join-induced
predicates) become the candidate cuts for the qd-tree. The
constructed qd-tree determines that table’s data layout.

Given the optimized layout,MTOassigns each table’s records to data
blocks using their respective qd-trees, as described in Section 2.1.

3.2.2 Online query execution. At query execution time, MTO uses
the qd-tree for each table to determine which blocks need to be ac-
cessed. Following our running example, Fig. 6 shows the qd-tree that
might be constructed forTable B by theMTOoptimization algorithm.
The qd-tree has three leaf nodes, so the records of Table B will be
stored in three blocks (B0, B1, B2). The qd-tree uses two cuts: a simple
cut B.y > 200, and a join-induced cut shaded in green. To determine
which blocks ofTableBneed to be accessedwhenprocessing theuser
query in Fig. 6, MTOwill do the following (a similar process would
occur independently to determine blocks to access on Table A):

(1) Identify all predicates from the query on that table, includ-
ing join-induced predicates, following the same procedure as
Steps 1a and 1b (but not 1c) from Section 3.2.1.

(2) Use the predicates to route through the table’s qd-tree to iden-
tify which blocks need to be accessed, using the process de-
scribed in Section 2.1. Section 4.1.2 provides details about rout-
ing through join-induced cuts (e.g., Step 2b in the example).

Note that these steps are applied independently for each table, before
execution occurs. Therefore, MTOwill skip the same set of blocks
regardless of the physical execution plan (e.g., the join order).

4 MTOALGORITHMS
In this section, we provide details about join-induced predicates and
also describe howMTOmaintains lowoptimization times evenwhen
scaling to larger datasets. We use the terminology shown in Table 1.

4.1 Join-induced Predicates
4.1.1 When Can We Induce? MTO supports induction on source
predicates that use =, ≠, <, ≤, >, ≥, IN, NOT IN, LIKE, and NOT LIKE,
including predicates overmultiple columns (e.g., A.X < A.Y), as well
as any conjunctions or disjunctions of the above. We support pred-
icate induction through equijoins over a single column, including
inner, one-sided outer, semi, anti-semi, and self joins.

In the simple example in Section 3.2, we induced a predicate from
Table A to Table B, and vice versa. However, in some caseswe cannot
induce a predicate from one table to another while maintaining a
semantically equivalent query. Consider the following query:
SELECT AVG(A.Z) FROM A WHERE A.X < 100 AND A.Y < (

SELECT COUNT(*) FROM B WHERE A.KEY = B.KEY AND B.Z > 200)

We can induce from A to B, producing the join-induced predicate
B.KEY IN (SELECT A.KEY FROM A WHERE A.X < 100). However,
we cannot induce from B to A. To determine when predicates can
be induced while maintaining a semantically equivalent query, we
use the following set of rules, similar to those found in [22]:

• Predicates can be induced in both directions through inner
joins; from the left to right side for a left outer join, and vice
versa for right outer joins; in both directions through semi
joins; and from the left to right side for a left anti-semi join,
and vice versa for right anti-semi joins. Predicates cannot be
induced through full outer joins.

• For self-joins, MTO logically creates two copies of the table,
treats them as different tables, and applies the above rules.

• Predicates can be induced from an outer query into a corre-
lated subquery [54] through any of the above rules. In the
example query given above, a predicate from the outer query
(A.X < 100) is induced into the correlated subquery (SELECT
COUNT(*) ...) through an inner join (A.KEY = B.KEY).

Just because we can induce doesn’t mean we should. In the optimiza-
tion process, MTO only considers join-induced predicates whose in-
duction paths are composed only of joins originating from columns
with unique values (e.g., inducing from a dimension table into a
fact table by joining on the dimension table’s primary key, but not
from a fact table’s foreign key into a dimension table). This is not a
fundamental limitation of join induction; instead, we enforce this re-
striction to make inserts and deletes more efficient (Section 5.2). We
verified experimentally that this restriction has minimal impact on
performance. Intuitively, this is because predicates induced from join
columns with non-unique values tend to fall on smaller tables with
fewer blocks (e.g., dimension tables), which limits the predicate’s
impact on the number of blocks skipped dataset-wide.

4.1.2 How DoWe Use Them? Like simple cuts in the qd-tree, join-
induced cuts are used to route records and queries down the tree. To
route records, we use the literal join-induced cut in the same way as
a simple cut. To route queries, the qd-tree checks for subsumption
between thequery and the logical join-induced cut: if the query’s join
graph does not share the join-induced cut’s induction path, route the
query to both child nodes in the qd-tree. Otherwise, route to the left
child if the query’s filters on the source table intersect the source cut,
and independently route to the right child if the query’s filters on the
source table intersect the negation of the source cut. For example, in
Step 2b of Fig. 6, the query filter on the source table (A.x > 200) does



Figure7:CardinalityadjustmentallowsMTOtoachieveaccu-
rate block size estimates when optimizing based on a dataset
sample, which improves the quality of the resulting layout.

not intersect the source cut (A.x < 100), but does intersect the nega-
tion of the source cut (A.x ≥ 100), sowe only route to the right child.

Qd-tree nodes that use join-induced cuts must store both the logi-
cal and literal cuts.The logical cut (i.e., a queryofnested semi-joins) is
compact, but literal cuts can incur highmemory costs, because theIN
list cangrowvery large, especiallyoverhigh-cardinalitykeycolumns.
To reduce space usage, we compress IN lists as Roaring Bitmaps [5],
which is the state-of-the-art bitmap compression technique [53].

4.2 Scalability through Sampling
To reduce the time needed for optimizing the layout when scaling to
larger datasets, MTO runs its optimization algorithm on a uniform
sample of the dataset insteadof the full dataset.Given a sampling rate
𝑠 , MTO creates a sample by selecting 𝑠 fraction of records from each
table in the dataset uniformly at random. For especially small tables
(e.g., under 1K records), MTO simply uses the entire table, because
sampling small tables does not meaningfully decrease optimization
time. If the desired block size on the full dataset is𝑏, MTOuses the ad-
justedblocksize𝑏×𝑠whenoptimizingbasedonthesampleddataset.2

It is well-known that the join of two uniform samples has quadrat-
ically fewer tuples than a sample of the original join [19]. MTOmust
account for this effect when evaluating the quality of join-induced
cutswhenoptimizingona sampleddataset. For example, Fig. 7 shows
a dataset with 10M records in Table A and 100M records in Table B.
The simple predicate 𝑝𝐵 on Table B and the join-induced predicate
𝑝𝐴→𝐵 on Table B both select 10M records. However, on a sampled
dataset with 𝑠 =0.1, 𝑝𝐵 selects (10M)𝑠=1M records, whereas 𝑝𝐴→𝐵

selects (10M)𝑠2=100K records. If MTO estimates block sizes on the
full dataset as 1/𝑠 of the block sizes on the sample, then it produces
inaccurate estimates of block size (e.g., the qd-tree shaded in orange
in Fig. 7). Optimizing without taking this discrepancy into account
may degrade the quality of the resulting layout.

Toaccount for this effect,MTOattaches avalue called the cardinal-
ity adjustment (CA) to every join-induced cut, defined as 𝑠𝑑 , where
𝑑 is the induction depth (e.g., the CA for 𝑝𝑋→𝑌→𝑍 is 𝑠2). Therefore,
in Fig. 7 the CA for 𝑝𝐴→𝐵 is 𝑠 . The left block in the bottom qd-tree

2We also experimented with ways to sample at different rates for different tables while
maintaining an overall sample rate of 𝑠 (e.g., sample more from smaller tables, sample
less from larger tables). However, we found through evaluation that more complex
schemes did not meaningfully impact the optimized layout’s performance.

(which is constructed over a sample) has block size 100K records,
but the cardinality-adjusted block size is (100K)/𝑠 = 1M records. This
is then used to produce an accurate estimate of the block size on the
full dataset.

Formally, let qd-tree node 𝑁 cover 𝑟 records of the sampled table,
so that the estimated cardinality of 𝑁 on the full dataset is 𝑟/𝑠. Let 𝑁
use join-induced cut 𝑝 , so that the left child𝑁𝐿 covers 𝑟𝐿 records and
the right child 𝑁𝑅 covers 𝑟𝑅 =𝑟−𝑟𝐿 records. If 𝑝 has a CA of 𝑘 , then
the estimated cardinality of𝑁𝐿 on the full dataset is not 𝑟𝐿/𝑠. Instead,
it is 𝑟𝐿/𝑠𝑘. Accordingly, the estimated cardinality of 𝑁𝑅 on the full
dataset is not 𝑟𝑅/𝑠, but instead 𝑟/𝑠−𝑟𝐿/𝑠𝑘. Simple cuts have a CA of 1.

The CA for a block (i.e., a leaf node) is the product of CAs for all
cuts on the traversal route from root to leaf. Adjustments caused by
a particular join are not double-counted if multiple intersecting cuts
along the traversal route have induction paths that contain that join.

5 WORKLOAD SHIFTANDDATACHANGES
In this section, we describe howMTO can adapt to changes in the
query workload and data.

5.1 DynamicWorkloads
MTO’s layout is optimized for a given query workload. However,
workload characteristics (e.g., join patterns, frequently filtered
columns) often change over time, which may cause query per-
formance on MTO’s layout to degrade. In response, MTO can
re-optimize its layout and physically reorganize blocks to specialize
for the newworkload. However, fully reorganizing a large dataset
can require significant time and computational resources. Therefore,
MTO has the ability to partially reorganize its layout. Intuitively,
MTOonly reorganizes qd-tree subtrees that result in themost overall
performance gain. For example, if only theworkload over Europehas
changed, and the qd-tree root node has the cut REGION = ‘EUROPE’,
MTO would only reorganize the left subtree. Next, we describe a
reward function for determining the value (i.e., benefitminus cost) of
reorganizing a qd-tree subtree, and then we describe howMTO uses
this reward function to determine the best reorganization strategy.

5.1.1 Minimizing Impact of Reorganization. Tominimize impact on
query performance, MTO spins up a separate process that performs
(partial) reorganization using a (partial) copy of the data. During
reorganization, queries are still executed on the existing data/layout,
so query serving is unaffected. After reorganization completes, the
new data/layout is swapped with the existing layout with minimal
impact on the workload.

5.1.2 Reward Function. Assume that workload shift has occurred
and we have already observed some queries, denoted𝑄 , from this
new workload (e.g., a sample of recently-run queries); assume we
expect to run 𝑞 more queries from the same distribution as𝑄 before
the next workload shift. The reward of reorganizing a subtree𝑇 (i.e.,
replacing𝑇 with a new qd-tree𝑇 ′ over the records in𝑇 ’s blocks) is
defined as 𝑅(𝑇,𝑄)= (𝑞/𝑤) ·𝐵(𝑇,𝑄)−𝐶 (𝑇 ), where:

• 𝐵(𝑇,𝑄) is the average number of block accesses that can be
reduced for a query in𝑄 if we fully reorganize the subtree𝑇 . It
represents the benefit of reorganizing𝑇 in terms of expected
impact on each of the next 𝑞 queries. To compute 𝐵(𝑇,𝑄), we
take all records in𝑇 ’s blocks and re-run offline optimization



Figure 8: Using 𝑞/𝑤 = 2 in the reward, MTO chooses to reorga-
nize the subtrees of nodes 2 and 6, achieving total reward 36.

(Section 3.2.1) to construct a new qd-tree 𝑇 ′, then take the
difference in block accesses over𝑄 between𝑇 and𝑇 ′.

• 𝐶 (𝑇 ) is the total number of blocks in𝑇 . It represents the cost
of fully reorganizing𝑇 ’s blocks. Note that𝐶 (𝑇 ) ≥𝐵(𝑇,𝑄).

• 𝑤 represents the relative overhead of reorganizing (i.e., re-
compressing and re-writing blocks) vs. accessing blocks in the
underlying storage system. For example, in our evaluation
system (Section 6.1.2), compressing and writing a block is
∼100× slower on average than reading a block, so𝑤 =100.

A negative reward implies that it is not worth fully reorganizing𝑇
(however, a subtree of𝑇 may still have positive reward). Computing
reward does not require us to actually perform any physical reorga-
nization. Reorganizing𝑇 ’s blocks does not impact any other blocks
in the layout. A higher𝑞 (meaningwe expect the next workload shift
will occur later in the future) encouragesMTO to reorganize a larger
portion of the dataset. 𝑞 ≤ 𝑤 leads to no reorganization, because
reward can never be positive. Currently, a user must manually set
𝑞; we leave automatic setting of 𝑞 based on predictions of future
workload changes as future work.

5.1.3 Finding the Optimal Reorganization Strategy. For each table in
the dataset, we compute 𝑅(𝑇,𝑄) for each subtree𝑇 of the table’s qd-
tree.Wewant to find the set of non-overlapping subtrees that has the
maximum combined reward; this optimal set can be empty, in which
case overall reward is 0.Wefind the qd-tree’s optimal set via dynamic
programming: we visit all nodes, starting from the leaves and work-
ing towards the root.At eachnode,wedetermine the optimal set over
its subtree: the optimal set for a leaf 𝐿 is {𝐿} if 𝑅(𝐿,𝑄)>0 and empty
otherwise. The optimal set for a non-leaf𝑇 is either {𝑇 } or the union
of the optimal sets of its two children, whichever one has higher
combined reward. The root node’s optimal set is the qd-tree’s optimal
set. Fig. 8 shows a qd-tree in which the optimal set has two subtrees.

MTO runs this re-optimization workflow periodically according
to some user-defined interval, such as every 𝑛 hours or every 𝑛

queries. If the overall reward is positive, MTO physically performs
the reorganization by replacing each subtree𝑇 in the optimal set
with its re-optimized subtree𝑇 ′ and re-writing𝑇 ’s blocks accord-
ingly. If reward is non-positive, implying minimal workload shift
during the interval, MTOwill not reorganize.

Computing the reward for every subtree canbeexpensive for large
qd-trees. Themain bottleneck is computing𝐵(𝑇,𝑄) for every𝑇 by re-
running optimization on𝑇 ’s records to obtain a new qd-tree𝑇 ′. The
following properties helpMTO prune nodes (i.e., avoid computing 𝐵
on thatnode’s subtree) thatprovably cannotbepart of theoptimal set:

Figure 9: Inserting two records into table B causes updates to
join-induced cuts in table F’s qd-tree.

(1) 𝐵(𝑇,𝑄) is upper bounded by the number of block accesses for
the average query in𝑄 using𝑇 ’s layout. This is because a new
qd-tree𝑇 ′ cannot reduce the block accesses to less than zero.

(2) 𝐵(𝑇,𝑄) ≥𝐵(𝑇𝐿,𝑄)+𝐵(𝑇𝑅,𝑄), where𝑇𝐿 and𝑇𝑅 are the left and
right subtrees of𝑇 . This is because any reorganizations of𝑇𝐿
and𝑇𝑅 independently can also be achieved by reorganizing𝑇 .

(3) If𝑅(𝑇,𝑄) ≥𝐵(𝑇𝐿,𝑄)+𝐵(𝑇𝑅,𝑄), then no set of𝑇 ’s subtrees can
have combined reward larger than 𝑅(𝑇,𝑄). This follows from
property 2 and the fact that𝐶 (𝑇 ) ≥ 0.

To take advantage of these properties, we first use property 1 on
every subtree to prune out any subtrees whose maximum possible
reward is non-positive. For each non-pruned subtree𝑇 , we cache the
upper bound for 𝐵(𝑇,𝑄). We then compute the reward for subtrees
starting fromthe rootnodeandcontinuing inbreadth-first order (e.g.,
in node IDorder in Fig. 8).When it comes time to compute the reward
for𝑇 , we first check the cached upper bound for𝐵(𝑇,𝑄). If the bound
is low enough that 𝑅(𝑇,𝑄) cannot be positive, then we prune𝑇 .

Otherwise, we compute the true value of 𝐵(𝑇,𝑄) and update the
cache to help prune later subtrees: (1) Benefits for𝑇 ’s subtrees are
upper bounded by 𝐵(𝑇,𝑄). Let 𝑇 ’s sibling and parent be 𝑆 and 𝑃 .
Benefits for 𝑆’s subtrees are upper bounded by 𝐵(𝑃,𝑄) − 𝐵(𝑇,𝑄).
This is possible through property 2. In Fig. 8, this helps us prune
nodes 7, 12, and 13. (2) Oncewe compute the reward for𝑇 and its two
children, we use property 3 to possibly prune out all further subtrees
of𝑇 . In Fig. 8, this helps us prune nodes 8-11.

5.2 Dynamic Data
Inserted, deleted, or updated records are routed to the relevant data
blocks using MTO’s qd-trees. The physical change itself is handled
transparently by the data analytics service. For example, many ser-
vices buffer data changes in delta stores, then periodically merge
delta stores into themain data store, which often requires re-writing
blocks. Thismerging overheadmust be paid for any data layout strat-
egy that maintains some sort order over records, including simple
strategies such as sorting by a user-selected column.

Data changes pose one unique challenge for MTO: join-induced
cuts must be updated to reflect the new data. After an insert into a
table,MTOmust update all join-induced cuts in other tables’ qd-trees
that have the changed table on its induction path. In Fig. 9, inserting
two records into table B results in updates to two join-induced cuts
in table F’s qd-tree. Any join-induced cuts in table B’s qd-tree are
unaffected. We perform the update by evaluating the relevant cut
only on the inserted records, not all the records of table B. Similarly, a
delete results in updates to join-induced cuts in other tables’ qd-trees,



performed by evaluating cuts only on the deleted records. A data
update is handled as a delete followed by an insert.

A subtle but important ramification of updating join-induced cuts
is that it shifts the “boundaries” between blocks. Will this force ex-
isting records to change blocks? Assuming referential integrity [55],
and due to induced predicates only originating from join columns
with unique values, like primary key columns (Section 4.1.1), inserts
and deletes in MTOwill never cause unchanged records to change
blocks, because there cannot be records in the “boundary shift” re-
gion. For example, the inserted records in Fig. 9 do not join with any
existing records in table F, so table F’s join-induced cuts will select
the same set of records before and after updating. However, data
updates might cause updates to join-induced cuts that force existing
records to change blocks.

6 EVALUATION
We present the results of an in-depth experimental study that com-
pares MTOwith other data layout strategies on a variety of multi-
table datasets and workloads. Overall, this evaluation shows that:

• Onacommercial cloud-basedanalytics service,MTOachieves
up to 93% reduction in blocks accessed and up to 75% reduc-
tion in overall query time compared to alternative methods
(Section 6.2). Queries with selective filters over joined tables
benefit most fromMTO (Section 6.3).

• MTO achieves low optimization times through sampling, re-
sulting in faster end-to-end performance compared to alter-
natives (Section 6.4).

• MTO adapts its layout in response to workload shift and data
changes (Section 6.5) and scales to larger query workload
sizes and data sizes (Section 6.6).

6.1 Setup
6.1.1 Datasets andWorkloads. We evaluate on three datasets: Star
Schema Benchmark (SSB) [38], TPC-H [51], and TPC-DS [50], each
by default with scale factor 100. This corresponds to around 60GB
of data for SSB and 100GB of data for TPC-H and TPC-DS. For SSB,
we use all 13 queries in the workload. For TPC-H, we support all 22
templates, and by default we use 8 randomly generated queries per
template, resulting in a workload of 176 queries. For TPC-DS, we use
46 templates that vary in complexity3, with one query per template.

6.1.2 Implementation and Systems. We implement MTO’s offline
optimization and simulation of blocks accessed during query exe-
cution in Python. We evaluate offline optimization and simulated
performance on an Arch Linux machine with Intel Xeon Gold 6230
2.1GHz CPU and 256GB RAM.We also test the impact on query ex-
ecution times on a commercial cloud-based analytics service, which
we refer to as Cloud DW, which performs block skipping via per-
block zone maps and semi-join reduction during query execution.
Cloud DW aims to store 1M records in each of its data blocks, but
blocks can have less than that target size (as low as around 100K
records) due to various internal factors, including the efficiency of
compression. Therefore, the block size in Cloud DW is not uniform.
In simulation, we use a block size of 500K records.

3We use templates 1-50, except for 14, 23, 24, and 39, which are each composed of
multiple queries.

SSB TPC-H TPC-DS

Total cuts 272 4253 662
Total join-induced cuts 201 3397 517
Avg induction depth 1 1.44 1.07
Max induction depth 1 4 2
Memory size 2.05MB 3.67GB 4.58MB

Table 2: Statistics ofMTO’s qd-trees.

Weperformed a shallow integration ofMTO intoCloudDW: each
block across the multi-table layout is assigned a unique block ID
(BID). For each table, we materialize a new column that contains the
BID for each record. In storage, we sort each table by its BID column.
The per-block zone maps will now contain the min/max BIDs for
records in the block. Before feeding each query into CloudDW,MTO
will rewrite the query by adding extra predicates which are used
transparently by Cloud DW’s zonemaps to skip unnecessary blocks.
For example, if routing a query through Table A’s qd-tree tells us
that processing the query only requires records from blocks 2 and
4 of Table A, we add the predicate A.BID IN (2, 4) to the query.

6.1.3 Comparisons. We compare MTO against two alternatives: (1)
Baseline, which sorts each table by a user-tuned column4. (2) STO,
which is an instance-optimized layout approach that follows MTO’s
algorithms without using join-induced predicates. That is, STO con-
structs a qd-tree per table, using only simple predicates. Note that
for all methods, we create one layout for all queries in the workload.

In simulation, we also use data-induced predicates [22] (diPs, de-
scribed in Section 3.1.1) to enhance the performance of STO and
Baseline, using range-sets of size 20. Since diPs are meant to be in-
corporated into the query optimizer, we were not able to show the
performance of diPs in Cloud DW as part of our shallow integration.

6.1.4 Metrics. We evaluate on three metrics: (1) number of blocks
accessed in simulation, where each block is exactly 500K records. (2)
Fraction of blocks accessed on Cloud DW. Because blocks are not
equally sized on Cloud DW, it is unfair to compare the raw number
of blocks accessed. Therefore, we use the fraction of blocks accessed
out of the total number of blocks in the accessed base tables. (3)
End-to-end query runtime on Cloud DW.

6.2 Overall Results
For eachmetric, we compareMTO to the alternatives using the over-
all metric across the entire query workload. We normalize to the
metric achieved by Baseline.

6.2.1 Simulated Block Skipping. Fig. 10a shows that across datasets,
MTO achieves between 43%–96% reduction in simulated block ac-
cesses compared to Baseline and between 32%–94% reduction in
simulated block accesses compared to the best alternative method.

Data-induced predicates (diPs) help reduce blocks accessed by
Baseline on SSB and TPC-DS. diPs do not provide any improvements
on TPC-H because the diP is usually not selective enough to make
an impact when pushed to other tables. Similarly, diPs provide only

4For SSB, we sort lineorders by orderdate and all other tables by primary key. For
TPC-H, we sort lineitem by shipdate, orders by orderdate, and all other tables by
primary key. For TPC-DS, we sort all fact tables by date (sold_date for sales tables and
returned_date for returns tables) and all dimension tables by primary key.



Figure 10: MTO achieves better overall workload performance than alternatives across datasets and metrics. Note that the
y-axes are normalized to themetric achieved by Baseline.

minor improvements for STO, because STO creates blocks based
only on columns that are filtered by simple predicates, which are
independent of join columns. Therefore, diPs created from STO’s
layout are not selective enough to make an impact.

Table 2 shows that for MTO, the total number of cuts over all
qd-trees varies across datasets. This trend is primarily due to the size
of the query workload that MTO optimizes on: (1) workloads with
more queries produce more candidate cuts, and (2) larger workloads
require a finer-grained blocking strategy in order to maximize block
skipping across all queries. For all datasets, MTO’s qd-trees are
composedmostlyof join-inducedcuts.OnSSB, the inductiondepthof
join-induced cuts is always 1, because all dimension tables are joined
directly to the fact table. OnTPC-H, themaximum induction depth is
4 (e.g., a join-induced cut with region as the source table and joining
through nation, customer, and orders to reach the lineitem table).

Table 2 also shows that the memory overhead of MTO, which
comes from its per-table qd-trees, is at most a few GB, which is
small compared to the size of the data (∼100GB). MTO’s size on
TPC-H is much higher than on SSB and TPC-DS due to having more
join-induced cuts with higher-cardinality literal cuts (e.g., many
join-induced cuts on TPC-H originate from the orders table, which
produces literal cuts with as many as 150M values).

6.2.2 Block Skipping on Cloud DW. Fig. 10b shows that MTO’s
simulated reduction in block accesses roughly translates to actual
reduction of block accesses on Cloud DW. Across datasets, MTO
achieves between 19%–93% reduction in fraction of blocks accessed
compared to the best alternative method.

There are a couple reasons for the difference between simulated
and actual block accesses: (1) Block sizes in simulation are fixed at
500K records, whereas actual block sizes in Cloud DWvary between
a maximum of 1M records and a low of around 100K records. (2) The
execution engine of Cloud DWmay perform extra optimizations
that we do not consider in simulation, such as semi-join reductions,
which lead to additional block skipping. These extra optimizations
may affect each method differently. In particular, the second reason
explains why, for TPC-DS, MTO and STO have higher normalized
block accesses on Cloud DW than in simulation: most queries in
the workload filter on date, which allows Baseline to heavily take
advantage of semi-join reductions, because Baseline sorts fact tables
by date. Therefore, Baseline accesses significantly fewer blocks on

Cloud DW than in simulation. MTO and STO can also take advan-
tage of semi-join reductions, but to a lesser extent because their fact
tables are not completely sorted on date.

6.2.3 End-to-end Runtimes onCloudDW. Fig. 10c shows that across
datasets, MTO achieves between 20%–75% reduction in end-to-end
query runtimes compared to the best alternative method. The reduc-
tion in query time is generally not as dramatic as the reduction in
block accesses because block access is only one part of the total time
spent on query execution (e.g., time to compute joins is not reduced
by block skipping). However, on TPC-DS, MTO and STO actually
improve their normalized performance compared to Fig. 10b. This
is because Baseline incurs heavier runtime costs of using semi-join
reductions, as explained in Section 6.2.2.

6.3 Performance Breakdown by Query
Fig. 11 shows the fraction of queries that achieve a certain reduction
in query time on Cloud DW compared to the alternative methods.
Reduction in query times from MTO is achieved by all queries in
SSB, around 50% of query templates in TPC-H, and around 75% of
queries in TPC-DS. For a few queries, performance regresses when
using MTO’s layout. This is because MTO optimizes to achieve best
overall block skipping across all queries in a workload. Therefore,
MTOmay allow performance to regress for certain queries in order
for overall performance to improve.

6.3.1 WhenDoesMTOPayOff? Fig. 10 shows that the performance
benefits of MTO varies depending on the dataset. To better under-
stand the conditions under which MTO offers performance benefit
over STO and Baseline, we select five query templates with different
filter/join characteristics from the TPC-H workload, all of which
touch the fact table (lineitem): Q1 has no joins and scans most of
the fact table, Q14 has a filter over the fact table on the sort column
(L_SHIPDATE) but no filter over joined dimension tables, Q6 has fil-
ters over the fact table on non-sort columns but no joins, Q4 has
selective filters over joined dimension tables only on columns that
are correlated to the fact table’s sort column, and Q5 has selective fil-
ters over joined dimension tables on columns that are not correlated
to the fact table’s sort column. We create five different layouts using
MTO and STO, specialized for each query template individually.

Fig. 12 shows simulated block skipping. For STO and Baseline, we
also evaluate using data-induced predicates (diPs), aswell as creating
asecondary index (SI)on the fact table’s joincolumn(L_ORDERKEY) so



Figure 11: Reduction in query runtimes achieved byMTO, relative to STO and Baseline. Different queries achieve different performance gains.

Figure 12: MTO has the most performance advantage over
STOandBaseline onquerieswith selectivefilters over joined
tables, like Q4 and Q5.

that at runtime,wepusha join-inducedpredicate fromthedimension
table to the fact table and use the secondary index to prune blocks.

Fig. 12 provides several insights: (1) On queries that have non-
selective filters (like Q1) or selective filters only over the sort column
(like Q14), MTO and STO have little or no advantage over Base-
line because Baseline already prunes most irrelevant blocks. (2) On
queries that have selective filters over non-sort columns and no joins
or only non-selective filters over joined tables (like Q6), MTO and
STO perform equally well, because MTO cannot take advantage of
join-induced predicates, but they both outperform Baseline. (3) On
queries with selective filters over joined tables that are correlated
with the fact table’s sort column (likeQ4),MTOperforms better than
STO and Baseline, but using a secondary index allows Baseline to
take advantage of correlations to filter out some blocks in the fact
table at runtime. (4) On queries with selective filters over joined
tables that are not correlated with the fact table’s sort column (like
Q5), MTO outperforms all alternatives by a large margin.

Therefore, in workloads with a significant portion of queries that
satisfy the third and fourth conditions above, MTO will show the
largest gains. This is especially true for the SSB workload, in which
most queries include a selective filter over a joined dimension table,
and no one sort column on the fact table is correlated to filtered
columns in all dimension tables. In contrast, the TPC-Hworkload
contains many queries that satisfy the first and second conditions,
and therefore MTO’s performance gains are not as significant.

6.4 End-to-end Performance
We examine the impact of offline steps (layout optimization and
assigning records to blocks) on end-to-end performance.

SSB TPC-H TPC-DS

MTO

Optimization time (min) 0.195 3.67 0.619
Data sample rate used for opt. 0.01 0.03 0.01
Routing time (min) 1.54 5.80 3.50
Total offline time (min) 1.73 9.47 4.12

STO

Optimization time (min) 0.0213 0.697 0.0611
Data sample rate used for opt. 0.003 0.0003 0.01
Routing time (min) 0.360 0.978 0.771
Total offline time (min) 0.381 1.68 0.832

Table 3: Offline optimization times for Fig. 10.

SSB TPC-H TPC-DS

X=total queries run, Y=STO 4 33 29
X=minutes from start, Y=STO 2.18 26.9 9.72
X=total queries run, Y=Baseline 6 56 32
X=minutes from start, Y=Baseline 2.41 39.1 10.3

Table 4: Howmany X until MTO runsmore queries than Y?

Figure13: (a)MTOandSTOcandecreaseoptimizationtimeby
using sampling.Cardinalityadjustment (CA)helpsMTOmit-
igate performance degradation. (b) MTO achieves the lowest
end-to-end runtimewhen optimized with a 3% data sample.

6.4.1 OptimizationTime. Table 3 shows the time thatMTOandSTO
take tofind theoptimal layout for eachdataset,whenoptimizedusing
thedata sample rates shown in the table.These sample rateswerecho-
sen so that the simulated performance of the layout optimized on the
sample has less than 1% difference with the layout optimized on the
full data. Smaller queryworkloads and simpler joinpatterns generate
fewer candidate cuts,which leads to lower optimization times. There-
fore,MTOoptimizationfinishesquickly forSSB,whichhas13queries



andamaximuminductiondepthof 1,whileoptimization takes longer
on TPC-H, whose workload has 176 queries and a maximum induc-
tion depth of 4 (Table 2). Similarly, data routing (i.e., assigning each
record toablock) is slowestonTPC-Hbecause theqd-treesoptimized
on TPC-H are larger and the paths from root to leaf are deeper (Ta-
ble 2). Optimization and routing times are lower for STO than MTO
because STO does not need to consider join-induced cuts during
optimization and does not include join-induced cuts in its qd-trees,
which makes both steps computationally simpler than for MTO.

Fig. 13a shows the impact of varying the sample rate between
1 (i.e., no sampling) and 0.0003 on optimization time for TPC-H.
The solid lines show blocks accessed in simulation when evaluated
on the full dataset, whereas the dotted lines show blocks accessed
when evaluated on the sample. With cardinality adjustment (CA)
(Section 4.2), the metric computed on the sample is close to the true
metric on the full dataset, whereas without CA, the sampled metric
is inaccurate. By using CA, MTO can reduce its optimization time
from nearly an hour without sampling to under 4 minutes with a
3% sample, while achieving nearly the same layout quality. STO’s
layout quality is negligibly impacted by sampling because it does not
consider join-induced cuts, which are most affected by sampling.

6.4.2 End-to-end Time. Fig. 13b shows the end-to-end time for the
TPC-Hworkloadwith 176 queries, including the offline optimization
and routing times. By optimizing on a 3% sample of the data, opti-
mization time is a small fraction of overall runtime for both MTO
and STO, and therefore the faster query times achieved byMTO al-
low it to complete the end-to-end workload quickest. Query routing
latency (i.e., determining which blocks a query must read) is on the
order of milliseconds per query, which is negligible compared to
total query time, which is on the order of seconds per query (Fig. 11).

SinceMTOpays the upfront time cost to perform offline optimiza-
tion and data routing, how long does it take for MTO to catch up to
STO and Baseline? Table 4 shows the total number of queries MTO
runs before surpassing STO and Baseline, as well as the time it takes
for MTO to complete that many queries (including time for offline
steps). For example, on SSB, MTO runs more queries than STO after
∼2 minutes. In all cases, MTO reaches this crossover point before
the workload completes.

6.5 DynamicWorkloads and Data
6.5.1 Dynamic Workloads. To show howMTO adapts to workload
shift, we use MTO to optimize the layout based on templates 1-11
of the TPC-Hworkload using 8 queries per template, then actually
run queries drawn from templates 12-22 of TPC-H. This simulates
a scenario in which the user completely and suddenly changes their
query workload; in reality, workload shift is likely not so abrupt.

Fig. 14a shows that immediately after the workload shift, queries
onMTO have higher execution times than queries on Baseline, be-
cause MTO’s layout is not optimized for the observed workload
(i.e., templates 12-22). Re-optimizing and physically reorganizing
the entire layout based on the observed workload (MTO Full Re-
org) takes more than two hours; during reorganization, queries are
still executed on the old layout (Section 5.1.1). However, MTO is
able to use partial re-optimization (Section 5.1, using 𝑞 = 200 and
𝑤 = 100) to physically reorganize only a subset of existing blocks.
Partial re-optimization and reorganization completes in under an

Figure 14: (a) MTO initially performs worse than Baseline
after workload shift but performs better in the long run
after reorganization. (b) MTO maintains its advantage over
Baseline after data insertion.

Frac. Data
Reorganized

Re-opt.
Time (min)

Frac. Subtrees
Considered in Re-opt.

𝑞=100 0 0 0
𝑞=200 0.370 9.81 0.031
𝑞=500 0.841 25.0 0.163
𝑞=1000 0.893 17.3 0.084
𝑞=∞ 1.0 2.48 N/A

Table 5: MTO behavior after workload shift.

hour (MTO Partial Reorg), while achieving nearly the same result-
ing performance benefit as a full reorganization, because it only
reorganizes the blocks that have the most impact on performance.
The bottom half of Fig. 14a shows the impact of reorganization on
the total number of queries executed over time. Even thoughMTO
initially executes fewer queries than Baseline after the workload
shift, it is able to quickly recoup the lost time after reorganization.

Table 5 shows that as we increase 𝑞 in the reward function while
fixing𝑤 =100 (Section 5.1.2), MTOwill choose to reorganize a larger
fractionof thedata. Therefore, a user canadjust𝑞 to tradeoffbetween
decreased execution time of future queries and computation costs
of reorganization. The time for physically performing reorganiza-
tion (i.e., writing/compressing blocks) is roughly proportional to the
fraction of data reorganized, and reorganizing all TPC-H data takes
around 2 hours in our setup. Furthermore, the time to perform re-
optimization is kept relatively low (compared to time for performing
reorganization) because we use the properties from Section 5.1.3 to
avoid unnecessary computation, and therefore only consider a small
fraction of all subtrees during the re-optimization process (Table 5).

6.5.2 Dynamic Data. To show howMTO adapts to dynamic data,
weuse theTPC-Hdataset.Wefirst remove all records from theorders
table with orderdate after Jan 1, 1996, and all records in the lineitem
table that join with the removed order records. This leaves around
61% of the records in both the orders and lineitem tables.We perform
offline optimization using this partial dataset, then insert the records
we had removed. This represents the common use case inwhich new
records are inserted into the fact tables (in this case, new records
from 3 years of orders).

Fig. 14b shows that MTO takes around 4 minutes to update join-
induced cuts (represented by the shaded region). MTO is unable to
assign inserted lineitem records to blocks while cuts are updating,
so queries accessing lineitem executed in the first 4 minutes must



Figure 15: MTO scales to larger query workload sizes and
improves its relative performance at larger data sizes.

read all inserted records, which is slow. After cuts have updated and
inserted records are assigned to blocks, MTO without reorganiza-
tion already achieves lower average query time than Baseline. This
implies thatMTOperformance is impacted less by data changes than
byworkload shift, because the structure/cuts of the existing qd-trees
still conform to observed query patterns; this is important for prac-
tical reasons because data changes happen frequently but we do not
expectworkload shift to occur as often.MTO can optionally perform
reorganization to boost performance further (Fig. 14b). In all cases,
MTO is able to quickly recoup the time spent updating join-induced
cuts and outpace Baseline in number of executed queries.

6.6 Scalability
6.6.1 Workload Size. OnTPC-H,we vary the number of queries per
template in the workload from 1 to 64. Since there are 22 templates,
this results in workloads ranging from 22 to 1408 queries. Fig. 15a
shows that as workload size increases, average blocks accessed by
MTO increases slightly, because the fixed number of data blocks
does not provide MTO enough degrees of freedom to optimize for
all queries in a larger workload with more unique predicates. Nev-
ertheless, MTO maintains a relative performance advantage over
alternative methods, with 30% and 39% fewer blocks accessed than
STO and Baseline, respectively, for a workload with 1408 queries.

6.6.2 Data Size. On TPC-H, we vary the scale factor from 1 to 100,
while maintaining the workload of 176 queries and a block size of
500K records. Fig. 15b shows thatMTO (and STO) achieves greater re-
duction in block accesses over Baseline as data size increases; larger
data size leads to more total data blocks, which allows MTO (and
STO) to take advantage of finer-grained blocking strategies.

7 RELATEDWORK

Physical Data Layouts & Partitioning. Cloud-based analytics
services typically distribute data across multiple nodes or partitions,
in order to scale out computation and load balance among computa-
tional resources. Data is often distributed either based on ingestion
time, or using range, hash, or round-robin distribution schemes [27].
Automatic design advisors use what-if analyses and data mining to
auto-tune thephysicaldesignandpartitioningscheme[1,37, 45].Cer-
tain automated approaches are specialized for transactional work-
loads [7, 43, 44] or analytic workloads [13, 29]. MTOmay be applied
within each node or partition created by these schemes.

Qd-tree [57] (Section 2.1) and Sun et al. [48, 49] propose physical
data layouts that maximize block skipping. Amoeba [47] adapts its

partitioning to ad-hoc workloads. These approaches optimize the
layout for a single table, whereas MTO jointly optimizes the layout
for multiple tables.

Instance-OptimizedDatabases.There has been a recent research
trend towards instance-optimizeddatabase systemsandcomponents.
Whereas design decisions in traditional systems are often made
though manual tuning or heuristics, the goal of instance-optimized
systems is to automatically specialize database components and
algorithms to a particular use case, sometimes using machine learn-
ing. MTO and qd-tree [57] are frameworks for instance-optimized
data layouts. [2] introduces layouts for hybrid read-write work-
loads tailored to the data and query workload. Recent works have
proposed instance-optimized, or learned, approaches for partition
advising [18], tuning [52], data structures and indexes [10, 11, 16, 20,
25, 28, 36, 56], query optimization [26, 32, 33, 41], cardinality estima-
tion [12, 23, 58, 59], job scheduling [31], workload forecasting [30],
and complete database systems [24].

Sideways Information Passing. Similar to MTO’s join-induced
predicates, data-induced predicates [22] (Section 3.1.1), column
equivalence [14], and magic-set rewriting [46] can also be used
to push predicate information through joins. The performance
benefit of these techniques depends on the data layout (e.g., pushed
predicates cannot help skip blocks if every block contains records
satisfying the predicate). MTO uses join-induced predicates to
explicitly construct a layout that maximizes opportunities for block
skipping during execution.

During query execution, sideways information passing between
two joined tables or subexpressions, often in the form of semi-join
reduction [3], can be used to skip blocks and speed up joins [4, 21, 42].
In contrast, MTO performs sideways information during offline opti-
mization in order to produce a better joint layout for multiple tables.

Some auxiliary data structures cache useful information about
joining tables. These include materialized views, join indexes [39],
and join zone maps [40]. These data structures use extra storage
space and incur maintenance overhead. In contrast, MTO does not
duplicate any of the base data.

8 CONCLUSION
One of the dominant costs for query processing in cloud-based data
analytics services is the I/O for accessing largedata blocks fromcloud
storage. Per-block zone maps are a commonly-employed technique
for reducing I/O by skipping blocks, but their effectiveness is depen-
dent on how the records are assigned to blocks, i.e., the data layout.
Existing approaches for optimizing data layouts only target a single
table, and their performance suffers in the presence of join-based
queries. In this paper,weproposeMTO, a data layout framework that
automatically and jointly optimizes the blocking strategy for all ta-
bles in amulti-table dataset for agivenqueryworkload.Weshowthat
by taking advantage of sideways information passing through joins
during the optimization process,MTOproduces layouts that achieve
up to 93% reduction in blocks accessed and 75% reduction in end-to-
end query times on a commercial cloud-based data analytics service.
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