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Abstract

With the advent of Web 2.0 and the Digital Age, we are witnessing an unprecedented
increase in the amount of information collected, and in the number of users interested
in different types of information. This growth means that traditional techniques, where
interested users poll data sources for information they are interested in, are no longer suf-
ficient. Polling too frequently does not scale, while polling less often may result in users
missing important updates. The alternative push technology has long been the goal of
publish/subscribe systems, which proactively push updates (events) to users with matching
interests (expressed as subscriptions). The push model is better suited for ensuring scalabil-
ity and timely delivery of updates, important in many application domains: personal (e.g.,
RSS feeds, online auctions), financial (e.g., portfolio monitoring), security (e.g., reporting
network anomalies), etc.

Early publish/subscribe systems were based on predefined subjects (channels), and
were too coarse-grained to meet the specific interests of different subscribers. The sec-
ond generation of content-based publish/subscribe systems provides finer granularity and
greater flexibility by supporting subscriptions defined as predicates over message contents.
However, in these systems, subscriptions are stateless filters over individual messages, so
they cannot express queries across different messages or over the event history. The few
systems that support more powerful subscriptions do not address the problem of efficiently
delivering updates to a large number of subscribers over a network. Thus, there is a need
to develop next-generation publish/subscribe systems that support richer, stateful subscrip-
tions over an event history database, with flexible notification conditions. This support
needs to be complemented with robust processing and dissemination techniques that scale
to high event rates and large databases, as well as to a large number of subscribers over a
network.

The main contribution of our work is a collection of techniques to support efficient and
scalable event processing and notification dissemination for a wide-area publish/subscribe
system with a rich subscription model. We have conducted two pieces of work in this
area. First, we developed a wide-area network monitoring system that intelligently places
bounded approximate caches (subscriptions) across the network to exploit localities among
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queries and data sources. Second, in the context of wide-area publish/subscribe systems
supporting stateful subscriptions, we investigated the interface between event processing by
a database server and notification delivery by a dissemination network. Previous research
in publish/subscribe has largely been compartmentalized; database-centric and network-
centric approaches each have their own limitations, and simply putting them together does
not lead to an efficient solution. A closer examination of database/network interfaces yields
a spectrum of new and interesting possibilities. In particular, we proposed message and
subscription reformulation as general techniques to support stateful subscriptions over ex-
isting content-based networks, by converting them into equivalent but stateless forms. We
showed how message and subscription reformulation can successfully be applied to various
stateful subscriptions including range-aggregation and joins. These techniques were shown
to provide orders-of-magnitude improvement over simpler techniques adopted by state-of-
the-art content-based publish/subscribe systems, and were shown to scale to millions of
subscriptions.

As future work in this domain, we will investigate scalable techniques for handling per-
subscription notification conditions. Consider a subscriber that is only notified when the
monitored value has changed by more than some prescribed threshold from the last reported
value; this last reported value is an example of per-subscription state that may be unique to
each subscription. Our preliminary investigations show that it is possible to support effi-
cient event processing at a database with or without knowledge of the actual subscriptions.
In addition, it is possible to efficiently disseminate notifications to a large number of sub-
scriptions by appropriate message and subscription reformulation. Moreover, by allowing
the notification requirement to be relaxed in a well-defined and disciplined manner, we can
obtain commensurate improvement in processing and dissemination efficiency.

Further ahead, we plan to investigate batching techniques to handle high event rates,
and tackle the problem of designing efficient dissemination techniques based on event
statistics and subscription semantics. Our ultimate vision is a system with an optimiza-
tion framework that intelligently chooses the appropriate interface between the database
and the network to maximize efficiency. The optimization would be guided by both run-
time statistics and subscription semantics. This unified view effectively treats different
server processing and network dissemination techniques as indexes (with the associated
costs) whose materialization and usage is driven by the optimization framework.

1 Introduction
With the advent of the Web 2.0 and the Digital Age, the necessity to capture and put together
large amounts of information has brought about multiple large-scale data acquisition and inte-
gration efforts. An important next step is to disseminate data efficiently to users. Traditionally,
users poll sources for information. However, polling too frequently may be inefficient, while
polling less often may miss important updates. The alternative push technology has long been
the goal of publish/subscribe systems, which proactively push updates (events) to users with
matching interests (expressed as subscriptions). The push model is better suited for ensuring
scalability and timely delivery of updates, important in many application domains: personal

2



(e.g., RSS feeds, online auctions), financial (e.g., portfolio monitoring), security (e.g., reporting
network anomalies, distributing critical software patches), etc.

Publish/subscribe is a model of data dissemination [24], where data is aperiodically pushed
from one or more sources (called publishers) to multiple destinations (called subscribers). Other
dissemination models include periodic push (e.g., broadcast disks [2]), periodic pull (client
polling systems), and aperiodic pull (classic request/response client/server systems).

A publish/subscribe system decouples data providers (sources) from data recipients (sub-
scribers). Sources publish data to the system, while subscribers specify their preferences re-
garding the data they wish to be notified of, in the form of subscriptions. The underlying
publish/subscribe middleware then takes the task of matching data items to the relevant sub-
scribers, and notifying them accordingly. A typical publish/subscribe system is arranged as a
set of nodes (called brokers) that cooperate to achieve the above goal. Subscribers attach them-
selves to brokers based on different criteria. Data sources generate updates to a database, which
may be located at a server, a set of distributed servers, or distributed throughout the nodes in the
network. The update could trigger a number of subscriptions. The publish/subscribe middle-
ware is responsible for ensuring that the update is disseminated to all brokers hosting affected
subscriptions.

Early publish/subscribe systems such as [35, 42, 52] are based on channels/subjects/topics.
Channels are predefined, and each update is tagged with one or more channels. Subscribers,
on the other hand, specify channels that they are interested in. The update is simply sent to all
subscribers subscribing to that channel. These systems could take advantage of group delivery
mechanisms such as multicast. However, the granularity of such systems was often found to be
too coarse to fit the particular interests of individual users. This led to the second generation of
content-based publish/subscribe systems. These systems provide finer granularity and greater
flexibility by supporting subscriptions defined as filters over the message contents. A large
number of such systems have been built in recent years. We briefly sample several of these
systems in Section 7. In a typical content-based publish/subscribe system, events may conform
to an event schema [38] such as [SYMBOL: string, PRICE: float], with events such as
[’GOOG’, 240.50]. Semantically, subscriptions are limited to being stateless filters such as
(SYMBOL=’IBM’ and PRICE<100). An incoming event can be matched to subscriptions either
at a server or within the network, and the matching can be performed without knowledge of past
history of events or the current subscription state. Content-based networks [10] are frequently
used to disseminate events. Such systems have been extensively studied [5, 40] in both the
database and networking communities.

The main contribution of our work is a collection of techniques to support efficient and scal-
able event processing and notification dissemination for a wide-area publish/subscribe system
with a rich subscription model. We have conducted two pieces of work in this area. First, we
developed a wide-area network monitoring system that intelligently places bounded approx-
imate caches (subscriptions) across the network to exploit localities among queries and data
sources. This is described in Section 3. Second, in the context of wide-area publish/subscribe
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systems supporting stateful subscriptions, we investigated the interface between event process-
ing by a database server and notification delivery by a dissemination network. Previous research
in publish/subscribe has largely been compartmentalized; database-centric and network-centric
approaches each have their own limitations, and simply putting them together does not lead to an
efficient solution. A closer examination of database/network interfaces yields a spectrum of new
and interesting possibilities. In particular, we proposed message and subscription reformulation
as general techniques to support stateful subscriptions over existing content-based networks,
by converting them into equivalent but stateless forms. We showed how message and sub-
scription reformulation can successfully be applied to various stateful subscriptions including
range-aggregation and joins. These techniques were shown to provide orders-of-magnitude im-
provement over simpler techniques adopted by state-of-the-art content-based publish/subscribe
systems, and were shown to scale to millions of subscriptions. This work is described in greater
detail in Section 4.

As future work in this domain, we plan investigate scalable techniques for handling a richer
subscription model with support for per-subscription notification conditions. Consider a sub-
scriber that is only notified when the monitored value has changed by more than some prescribed
threshold from the last reported value; this last reported value is an example of per-subscription
state that may be unique to each subscription. Our preliminary investigations show that it is
possible to support efficient event processing at a database with or without knowledge of the
actual subscriptions. In addition, it is possible to efficiently disseminate notifications to a large
number of subscriptions by appropriate message and subscription reformulation. Moreover, by
allowing relaxation of the notification requirement in a well-defined and disciplined manner,
we can obtain commensurate improvement in processing and dissemination efficiency. Our
preliminary observations and proposed techniques are discussed in detail in Section 5.

Further ahead, we plan to investigate batching techniques to handle high event rates. We
plan to tackle the problem of designing efficient dissemination techniques based on event statis-
tics and subscription semantics. Our ultimate vision is a scalable wide-area publish/subscribe
system supporting a rich subscription model with flexible notification conditions. Such a sys-
tem would incorporate an optimization framework that chooses the appropriate interface be-
tween the database and the network. This event-driven framework would be guided by both
online statistics and semantic knowledge. This unified view effectively treats different server
processing and network dissemination techniques as indexes (with the associated costs) whose
materialization and usage is driven by the optimization framework. These ideas for future work
are described in Section 6.

Finally, we present related work in Section 7 and conclude with the vision and goals in
Sections 8.
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2 Motivation
2.1 Powerful subscription models: challenging yet necessary
In both subject-based and content-based publish/subscribe systems, subscriptions are essentially
simple stateless filters over defined over individual messages, so they cannot express queries of
interest across different messages or over the event history. This limitation means that these sys-
tems cannot efficiently support modern application requirements. They make the end users deal
with complex local post-processing, which requires maintaining unnecessarily large amounts of
state and results in high volumes of updates.

Modern applications and users may want updates to be further transformed, correlated,
and/or aggregated. They may want to receive notifications only when certain important events
occur, and want to receive data that are filtered, joined, and summarized. For example, with
a range-aggregate subscription, a user can track the minimum PER (price-to-earning ratio, a
popular measure of stock quality) of stocks within a risk range. This subscription is stateful, be-
cause just by looking at a stock update message, the system cannot always tell whether or how
the message would affect the subscription. To meet the needs of such applications, we need a
publish/subscribe interface that supports a powerful subscription model that incorporates rich
content definitions and flexible notification conditions.

In order to illustrate the challenges in supporting richer subscription models, consider the
following example of a range-min subscription. Consider a publish/subscribe system that mon-
itors the stock market for a large number of traders over a wide-area network. Conceptually,
the system provides a database view STOCK(SYMBOL, RISK, PER, . . .) that continuously tracks
the up-to-date information for each stock. Suppose that a user is interested in tracking the min-
imum PER of stocks within a risk range [x1, x2] that she is comfortable with. She can define a
subscription over STOCK using a SQL query: SELECT MIN(PER) FROM STOCK WHERE x1 <=

RISK AND RISK <= x2. To simplify discussion, let us focus on updates of PER, and assume
that each update message has the schema 〈SYMBOL, RISK, PER, . . .〉, where PER is the new price-
to-earning ratio after the update. When such a message arrives, the system needs to notify those
users whose subscription query results are affected by the PER update.

The range-min subscription is stateful. To illustrate, consider the current state of STOCK
shown as a collection of points (labeled by ti and shown in solid black) in Figure 1; the X-
axis plots RISK, while the Y -axis plots PER. Each range-min subscription (labeled by si) is
represented as a horizontal interval spanning the risk range of interest, whose height equals the
minimum PER in that range.

Suppose that an update lowers t4’s PER to just below that of t5 (indicated by a dotted line
with arrow). This update should affect subscriptions s3 and s4, but not s1, s2, or s5. For s1

through s4, their ranges all cover t4’s RISK. In order to determine that s3 and s4 are affected
while s1 and s2 are not, the system must be able to compare t4’s new PER with the minimum
PER currently maintained by each of these subscriptions; this latter information is not available
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Figure 1: Example STOCK table and range-min subscriptions.

in the update message.
A more complicated situation arises when the current minimum PER shared by a group

of subscriptions is updated higher, potentially exposing them to different new minima. For
example, suppose that an update raises t5’s PER, as illustrated in Figure 1. As a result of this
update, s3 should be updated with t3’s PER, while s4 should be updated with t6’s PER. Neither
piece of information is available in t5’s update message. In general, the system must maintain
the entire state of the STOCK table in order to handle such updates.

Support for these powerful subscription models should not impact the scalability in terms
of data rates, database size, and number of subscriptions. This motivating factor is the driving
force behind the work described in subsequent sections.

2.2 Need for designing the right database/network interface
At the conceptual level, the bulk of the work performed by a publish/subscribe system can
be roughly divided into two components: (1) subscription processing, the task of matching
and processing each incoming publish message with the large set of active subscriptions, and
(2) notification dissemination, the task of notifying, over a network, those subscribers who are
interested in the publish message. Previous work from the database research community has fo-
cused on efficient subscription processing; notification dissemination is rarely addressed. Most
existing work assumes that a server maintains the entire database state and all subscriptions in
the system, and is responsible for computing the set of subscribers affected by each incoming
publish message. A straightforward way to notify this set of subscribers is to unicast a notifica-
tion to each of them in turn. When many subscribers need to be notified, this approach will incur
a large amount of outbound traffic from the server, and may easily overwhelm the server and
its network links. As server-side subscription processing techniques (such as sharing [18] and
indexing [26]) continue to mature, the dissemination bottleneck has surfaced in many systems,
both research [20] and commercial [28]. Recently, the database community has made some
initial efforts [20, 40] in addressing this problem (further discussed in Section 7), but much
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research is still needed.
On the other hand, the networking research community has always focused on efficient noti-

fication dissemination. Notable mechanisms include multicast [3] and content-based network-
ing [10]. With multicast, the system defines a number of multicast groups, each consisting of a
set of subscribers, e.g., those who are interested in Google’s stock. The network can efficiently
disseminate the same message to all members of the group. With content-based networking, the
system views each message as a tuple of attribute-value pairs; e.g., attributes in a stock update
message may include SYMBOL, RISK, PRICE, EARNING, etc. Each subscription is defined as a
predicate over the message tuple; e.g., SYMBOL = ’GOOG’, or RISK ∈ [20, 60] (between mod-
erately low to medium risk). The network is typically implemented by an overlay of nodes that
perform application-level routing. Each overlay node maintains a summary of all subscriptions
reachable from each of its outgoing overlay links, and it forwards an incoming message onto an
outgoing link if the message matches the corresponding summary. Both mechanisms, however,
support only stateless subscriptions, i.e., those that can be processed by examining the message
itself. For multicast, a message’s group id encodes its forwarding directions. For content-based
networking, the message tuple contains all the information needed to forward the message.

To motivate the need to examine the database/network interface, let us go back to the exam-
ple from Section 2.1 and examine how range-min subscriptions can be supported. Following the
traditional database-centric approach, we can use a server to maintain all subscriptions and the
up-to-date state of the STOCK table. Thus, for each incoming stock update message, this server
can easily compute which subscriptions are affected and how they need to be updated. How-
ever, options for disseminating these notifications are limited. (1) Unicast is the most natural
way, but can be inefficient for a large number of affected subscriptions. (2) Content-based net-
working is difficult to leverage because of an “impedance mismatch”: A content-based network
performs matching between messages and subscriptions in the network, while in this database-
centric approach the server has already computed the list of affected subscriptions; converting
this list back to a message for dissemination in a content-based network is not straightforward,
and would be a waste of resources because of duplicate processing. (3) Multicast is a possibil-
ity, but to do a perfect job, we would need a multicast group for every possible subset of the
subscriptions that could be affected by a stock update in the same way. There may be a pro-
hibitively large number of such groups (up to 2m if every subset from a total of m subscriptions
can form a group), rendering multicast infeasible. Even if we restrict the problem to range-min
subscriptions alone, it is unclear how to reduce the space of possible groups. For example, in
Figure 1, although s2’s risk range contains that of s3, not every update affecting s3 would affect
s2, and vice versa.

An alternative is to follow a network-centric approach. Content-based networking is a nat-
ural starting point because it supports range subscriptions. We can “relax” a range-min subscrip-
tion SELECT MIN(PER) FROM STOCK WHERE x1 <= RISK AND RISK <= x2 to a range sub-
scription SELECT * FROM STOCK WHERE x1 <= RISK AND RISK <= x2. The network would
then forward to each subscriber every stock update message that falls within her risk range.

7



Each subscriber locally maintains the content of the range subscription from which the range-
min subscription can be derived. Note that all stocks in the range must be maintained (not just
ones with the minimum PER) in order to handle the case when the minimum PER rises. Besides
this maintenance overhead, a more serious issue is that the relaxation of a stateful subscription
into a stateless one can potentially result in much more update traffic. For example, in Figure 1,
any PER movement of t4 above t5’s PER has no effect on any subscriptions, but with this ap-
proach, all updates of t4 would still be forwarded to s1 through s4 simply because t4 falls into
their risk ranges.

This example shows that efficient support of stateful subscriptions is a challenging problem
for wide-area publish/subscribe systems. On one hand, existing network dissemination mecha-
nisms do not support stateful subscriptions directly. While it is possible to relax a stateful sub-
scription into a stateless one and rely on subscribers to perform additional local post-processing,
doing so requires unnecessarily large amounts of local subscription state and high volumes of
notifications. On the other hand, while the database-centric approach can easily process stateful
subscriptions at a server, disseminating notifications over a wide-area network remains difficult
because of the inefficiency of unicasts and the difficulty in interfacing the server with advanced
network dissemination mechanisms such as multicast and content-based networking.

We argue that the key to the solution lies in properly interfacing the database with the net-
work, in order to combine the processing power of database servers and the dissemination power
of the network effectively. In general, there is a wide spectrum of possibilities for interfacing
the database with the network and for dividing up work between them. These possibilities
provide an interesting set of trade-offs in terms of efficiency, scalability, and manageability of
the system. To the best of our knowledge, there is no prior work that investigates this spec-
trum of database/network interaction models comprehensively. This unified perspective from
both databases and networking enables us to identify interesting hybrid solutions that outper-
form approaches that are either database-centric or network-centric. This perspective is further
discussed in Section 4, 5, and 6.

2.3 Need for a holistic view to wide-area publish/subscribe system design
Publish/subscribe solutions that have been proposed in both the database and networking com-
munities have largely dealt with specific classes of scenarios. However, there has been no effort
to integrate these techniques into a single framework that chooses the correct server-side index-
ing strategy and network-side dissemination technique based on the current scenario.

As motivation, we again look at the publish/subscribe system example from Section 2.1.
Suppose that a user is interested in a simpler subscription, that of tracking the PER of a stock that
she owns. However, the user wishes to be notified only when the PER changes by more than 10%

from her last notified value. This is an example of a more powerful notification condition. She
can define a subscription over STOCK using a SQL query: SELECT PER FROM STOCK WHERE

SYMBOL = ’GOOG’ NOTIFY WHEN RESULT CHANGED BY 10%. Now, if the PER of stocks tend
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to change very slowly, any update would tend to trigger very few subscriptions, and Unicast
would be the preferred mechanism with very low overhead. On the other hand, if the PER of
stocks tend to change rapidly and/or the notification conditions are very tight, it would be better
to use a content-based network to deliver notifications. If the same large set of subscribers tend
to get notified by the same events, it may be most efficient to setup a multicast group with those
recipients.

From this example, we see that depending on the dynamic event and subscription character-
istics, different techniques may need to be employed by the system. The interface between the
network and the database is sensitive to the characteristics of the workload placed on the sys-
tem. Similarly, on the database side, the use of different types of index structures is appropriate
under different scenarios. This means that we need to introduce an optimization framework
that chooses the appropriate interface between the database and the network. This event- driven
framework would be guided by both online statistics and semantic knowledge. This unified
view effectively treats different server processing and network dissemination techniques as in-
dexes (with the associated costs) whose materialization and usage is driven by the optimization
framework. We discuss this further in Section 6.

3 Distributed Network Querying
As a first step towards richer wide-area publish/subscribe, we started by looking at some popular
wide-area applications and their data requirements. We looked at a scenario where a distributed
set of nodes produce measurements (data) of interest, such as CPU load, average latency to
other nodes, amount of free memory, etc. It turns out that approximate answers are usually
sufficient as long as the approximation is quantified and the users can control the degree of
inaccuracy. We addressed the problem of selecting and location bounded approximate caches
in the network, by taking advantage of several optimization opportunities that exist in our target
applications. The goal was to optimize overall network traffic, while adapting to different types
of client workloads. This work showed that by exploiting the optimization opportunities, we can
reduce network traffic to both maintain caches and answer queries approximately. A bounded
approximate cache is similar to a continuous query with notification conditions. By creating
such caches dynamically, placing these caches at strategic locations, and giving users a way to
contact nearby caches easily, we were able to take advantage of aperiodic push while at the same
time not sacrificing the ability to pull data when conditions are such that pull is more efficient.

3.1 Introduction
Consider a network of nodes, each monitoring a number of numeric measurements. These
measurements may be related to performance, e.g., per-node statistics such as CPU load and
the amount of free memory, or pairwise statistics such as latency and bandwidth between
nodes. Measurements may also be application-specific, e.g., progress of certain tasks, rate
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of requests for particular services, popularity of objects in terms of number of recent hits, etc.
Such measurements are of interest to distributed monitoring systems (e.g., Ganglia [33]) as
well as systems requiring support for querying distributed resources (e.g., PlanetLab [41] and
the Grid [23]).

We consider the problem of efficiently supporting relational-style queries over these dis-
tributed measurements. For example, a network administrator may want to issue periodic mon-
itoring queries from a workstation over a remote cluster of nodes; a team of scientists may be
interested in monitoring the status of an ongoing distributed simulation running over the Grid.
The results of these monitoring queries may be displayed in real time in a graphical interface
on the querying node, or used in further analysis. As another example, consider relational-style
querying of distributed resources. Suppose there are two sets of nodes. A query may request
pairs of nodes (one from each set) satisfying the following condition: Both nodes have low load
(which can be expressed as relational selection conditions), and the latency between them is
low (which can be expressed as a relational join condition). Such queries are typical in resource
discovery, e.g., when a Grid user wants to select a data replica and a compute server among
candidate replicas/machines to perform a job, or when a distributed systems researcher wants
to select some nodes on PlanetLab with desired load and connectivity requirements for running
experiments.

With increasing network size and complexity, the task of querying distributed measurements
has become exceedingly difficult and costly in terms of time and network traffic. Processing a
query naively (by simply contacting the nodes responsible for the requested measurements) is
very expensive, as we will demonstrate in our experiments. If kept unchecked, network ac-
tivities caused by the queries could interfere with normal operations and lead to unintended
artifacts in performance-related measurement values. These problems are exacerbated by peri-
odic monitoring queries, by queries that request measurements from a large number of nodes,
and by queries that return a large result set.

We seek to develop a better infrastructure for distributed network querying, by exploiting
optimization opportunities that naturally arise in our target applications: (1) Approximation:
For most network monitoring and resource querying applications, exact answers are not needed.
Approximate values will suffice as long as the degree of inaccuracy is quantified and reported,
and the user can control the degree of inaccuracy. Small errors usually have little bearing on
how measurements are interpreted and used by these applications; at any rate, these applications
already cope with errors that are inevitable due to the stochastic nature of measurements. (2)
Locality: Many types of localities may be naturally present in queries. There is temporal locality
in periodic monitoring queries and queries for popular resources. There may also be spatial
locality among nodes that query the same measurements; for example, a cluster of nodes run
similar client tasks that each check the load on a set of remote servers to decide which server
to send their requests. Finally, there may be spatial locality among measurements requested by
a query; for example, a network administrator monitors a cluster of nodes, which are close to
each other in the network.
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We have built a distributed querying infrastructure that exploits the optimization opportuni-
ties discussed above. The first opportunity can be exploited by bounded approximate caching [36]
of measurement values. To ensure the quality of approximation, the system actively updates a
cache whenever the actual value falls outside a prescribed bound around the cached value. The
effectiveness of bounded approximate caching has been well established [36]. In this work,
we focus on developing efficient and scalable techniques to place, locate, and manage bounded
approximate caches across a large network, so that locality, the second opportunity mentioned
above, is also exploited in an effective manner.

The naive approach is to cache queried measurements just at the querying node. Unfortu-
nately, this approach is not very effective in our setting. First, queries from other nodes have no
efficient way of locating these caches. Second, bounded approximate caches are more expensive
to maintain than regular caches, because nodes with the original measurements must actively
update bounded approximate caches when their bounds are violated. For regular caches, be-
cause of low cache maintenance overhead, one can take an aggressive approach of caching
every miss and discard it later if it turns out to be not beneficial. The naive approach may
well work if such an aggressive approach is feasible. However, we do not have such luxury for
bounded approximate caching; we must carefully weigh its cost and benefit before deciding to
cache a measurement, because of the costs incurred in establishing, maintaining, and tearing
down a bounded approximate cache. With the naive approach of caching only at the querying
node, since caching only benefits the querying node itself, it is unlikely that this benefit will
outweigh the cost of caching.

Therefore, we need to find an effective way to aggregate the benefits of caching by making
caches easier to locate and more accessible to querying nodes. We would also like to exploit
locality in query workload by encouraging the same node to cache measurements that are fre-
quently queried together, and by encouraging a measurement to be cached close to nodes that
are querying it. Moreover, we need to base our caching decision on a cost/benefit analysis that
seeks to minimize the overall foreground traffic (for queries) and background traffic (for cache
updates and maintaining statistics for caching decisions) in the system. Accomplishing these
goals in a scalable manner, without relying on central servers and access to global knowledge
of the system, is a challenging task.

We have developed two approaches. The first approach uses a recursive partitioning of
the network space to place caches in a static, controlled manner, and is described briefly in
Section 3.2. The second approach (described in Section 3.4) uses a distributed hash table
(DHT) such as [47] to place caches in a scalable, dynamic and decentralized manner. Both
approaches are designed to capture various forms of locality in queries to improve performance.
We show how to make intelligent caching decisions using a cost/benefit analysis, and we show
how to collect statistics necessary for making such decisions with minimum overhead. Using
experiments running on ModelNet [56], a scalable Internet emulation environment, we show
in Section 3.6 that our solution significantly reduces query costs while incurring low amounts
of background traffic; it is also able to exploit localities in the query workload and adapt to
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volatility of measurements.
Although we focus on network monitoring and distributed resource querying as motivation

for our work, our techniques can be adapted for use by many other interesting applications.
In [16], we briefly describe how to generalize the notion of a “query region” from one in the
network space to one in a semantic space. For example, a user might create a live bookmark
of top ten Internet discussion forums about country music, approximately ranked according to
some popularity measure (e.g., total number of posts and/or reads during the past three hours),
and have this bookmark refreshed every five minutes using a periodic query. In this case, the
query region is “discussion forums about country music,” and the popularity measurements
of these sites are requested. Generalization would allow our system to select a few nodes to
cache all data needed to compute this bookmark, and periodic queries from users with similar
bookmarks will be automatically directed to these caches.

3.2 System Overview
3.2.1 Data and queries.

Our system consists of a collection of nodes over a network. Each node monitors various
numerical quantities, such as the CPU load and the amount of free memory on the node, or
the latency and available bandwidth between this and another node. These quantities can be
either actively measured or passively observed from normal system and network activities. We
call these quantities measurements, and the node responsible for monitoring them the owner of
these measurements.

A query can be issued at any node for any set of measurements over the network. The term
query region refers to the set of nodes that own the set of measurements requested. Our system
allows a query to define its region either by listing its member nodes explicitly, or by describing
it semantically, e.g., all nodes in some local-area network, or all nodes running public HTTP
servers. By the manner in which it is defined and used, a query region often exhibits locality in
some space, e.g., one in which nodes are clustered according to their proximity in the network,
or one in which nodes are clustered according to the applications they run. For now, we will
concentrate on the case where regions exhibit locality in terms of network proximity, which is
common in practice. In [16], we briefly discuss how to handle locality in other spaces.

For a query that simply requests a set of measurements from a region, the result consists
of the values of these measurements. Our system allows a query to specify an error bound
[−δ−q , δ+

q ]; a stale measurement value can be returned in the result as long as the system can
guarantee that the “current” measurement value (taking network delay into account) lies within
the specified error bound around the value returned. To be more precise, suppose that the
current time is tcurr and the result contains a measurement value vt0 taken at time t0. The
system guarantees that vt, the value of the measurement as monitored by its owner at time t,
falls within [vt0 − δ−q , vt0 + δ+

q ] for any time t ∈ [t0, tcurr − lag ], where lag is the maximum
network delay from the querying node to the owner of the measurement (under the routing
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scheme used by the system). More discussion on the consistency of query results in our system
can be found in [16].

Beyond simple queries, our system also supports queries involving relational selections or
joins over bounded approximate measurement values. Results of such queries may contain
“may-be” as well as “must-be” answers. The details of the query language and its semantics are
beyond the scope of this document.

3.2.2 Bounded approximate caching.

As discussed in Section 3.1, the brute-force approach of contacting each owner to obtain mea-
surement values is unnecessary, expensive, and can cause interference with measurements.
Caching is a natural and effective solution but classic caching is unable to bound the error
in stale cached values. Instead, we use bounded approximate caching, where bounds on cached
measurement values are actively maintained by the measurement owners (directly or indirectly).

The owner (or a cache) of a measurement is referred to as a cache provider (with respect
to that measurement) if it is responsible for maintaining one or more other caches, called child
caches, of that measurement. Each cache entry contains, among other information, the cached
measurement value and a bound [−δ−, δ+]. A cache provider maintains a list of guarantee
entries, one for each of its child caches. A guarantee entry mirrors the information contained
in the corresponding child cache entry, and is used to ensure that the guaranteed bounds of
child caches are maintained. We require the bound of a child cache to contain the bound of its
provider cache.

Whenever the measurement value at a cache provider changes, it checks to see if any of
its child caches need to be updated with a new value and bound. If yes, the provider notifies
the affected child caches. The cache entries at these child caches and the guarantee entry at
the provider are updated accordingly. This process continues from each provider to its child
caches until we have contacted all the caches that need to be updated. This update of bounded
approximate caches is similar to the update dissemination techniques described in [50]. We use
a timeout mechanism to handle network failures (see [16] for details).

The choice of bounds is up to the application issuing queries. Tighter bounds provide bet-
ter accuracy, but may cause more update traffic. There are sophisticated techniques for setting
bounds dynamically and adaptively (e.g., [37]); such techniques are largely orthogonal to our
contributions. Here, we focus on techniques for selecting bounded approximate caches to ex-
ploit locality and the tradeoff between query and update traffic, and for locating these caches
quickly and efficiently to answer queries. These techniques are outlined next.

3.2.3 Selecting and locating caches.

We have developed two approaches to selecting and locating caches in the network. The first
is a controlled caching approach and is described in [16]. The idea is to use a coordinate
space such as the one proposed by Global Network Positioning (GNP) [34] for all nodes in the
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network, and perform controlled caching based on a hierarchical partitioning of the GNP space.
Each owner preselects a number of nodes as its potential caches, such that nearby owners have
a good probability of selecting the same node for caching, allowing queries to obtain cached
values of measurements in large regions from fewer nodes. The selection scheme also ensures
that no single node is responsible for caching too many measurements, and that the caches
are denser near the owner and sparser farther away; therefore, queries from nearby nodes get
better performance. We show in [16] that this approach does quite well compared to the naive
approach of contacting the node responsible for the requested measurements. This approach,
however, exploits some but not all types of locality that we would like to exploit and also
restricts the amount of caching at any node by design. There is also a concern of scalability
because some nodes carry potentially much higher load than other nodes. Nevertheless, because
of its simplicity, the GNP-based approach is still viable for small- to medium-sized systems.

This led us to develop a new approach which has a number of advantages over the first one
and is our main focus. This second approach uses a locality-aware DHT to achieve locality-
and workload-aware caching in an adaptive manner. Not only do nearby owners tend to select
the same nodes for caching (as in the controlled approach), queries issued from nearby nodes
for the same measurements also encourage caching near the querying nodes. With the use of
a DHT, the system is also more decentralized than in the controlled approach. We use DHTs
because the technology scales to a large number of nodes, the amount of state at each node is
limited, it uses no centralized directory, and it copes well with changing network conditions.
The downside is a lesser degree of control in exploiting locality, and more complex protocols to
avoid centralization. The details of our approaches are presented next.

3.3 GNP-Based Controlled Caching
Partitioning of the GNP space. In addition to its IP address, each node can be identified

by its position within the network, described as a set of coordinates in a geometric space such
as the one proposed by Global Network Positioning (GNP) [34]. GNP assigns coordinates to
nodes such that their geometric distances in the GNP space approximate their actual network
distances.

Our controlled caching approach is based on a hierarchy produced by recursively partition-
ing the GNP space. For ease of exposition, we use a simple, grid-based partitioning scheme
identical to that of [30]; it can be replaced by any other recursive partitioning scheme without
affecting other aspects of our approach. We recursively partition a d-dimensional GNP space
into successively smaller squares (d-dimensional hyper-rectangles), as shown in Figure 2 for
d = 2. The smallest squares are referred to as order-1 squares. In general, each order-(i + 1)

square is partitioned into 2d subsquares of order i. A node in the GNP space is located in exactly
one square of each order.
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Figure 2: Recursive partition of GNP space. Figure 3: k-nearest mapped cache locator.
Candidate cache selection. Each owner selects a number of other nodes in the network

as its candidate caches. We allow each owner O to select a candidate cache in each of its
sibling squares: As illustrated in Figure 2, an order-i sibling square of O is an order-i square
that belongs to the same order-(i + 1) square as O, but does not contain O itself. This scheme
ensure that the candidate caches provide reasonable coverage of the entire GNP space, with
better coverage closer to the owner.

To select a candidate cache in a sibling square, we use a cache locator function. This function
takes as input a sibling square and the IP address of the owner, and returns the IP address of the
owner’s candidate cache within the given sibling square. A good cache locator function should
be quick to compute, consistent in its result, and should ensure that nearby owners have a good
probability of selecting the same candidate cache. The last requirement allows us to exploit
locality in a query region to reduce processing costs: A query can obtain cached measurements
in a large region by contacting just a few nodes.

We have considered several possible definitions of the cache locator function. Here, we
briefly describe a cache locator function called the k-nearest mapped cache locator, which
considers locality in query regions. Suppose that we wish to determine the representative for
an owner in a sibling square S of a particular order. We map all nodes within S, randomly and
uniformly, into points in the other 2d − 1 squares that belong to the same higher-order square
as S, as shown in Figure 3. We find the k (a small integer) points that are nearest to the owner,
and order them by their distance to the owner. The candidate cache is selected to be the node
corresponding to the i-th point, where i is obtained by hashing the owner IP to an integer in
[1, k]. Since nearby owners may share many of their k-nearest points, there is a good chance
that the same candidate cache will be selected.

GNP servers. We need a mechanism to accomplish two basic tasks required by our caching
scheme: (1) A node should be able to determine the GNP coordinates of any other node given
its IP. (2) Given an owner, a querying node should be able to locate the closest candidate cache
of the owner. To this end, we use a hierarchy of GNP servers. Within each square (of any
order), a node is designated as the GNP server responsible for this square. Each node in the sys-
tem remembers the IP of the GNP server responsible for its order-0 square. Each GNP server
remembers the IP of the GNP server responsible for each of its subsquares, and vice versa.
In addition, each GNP server maintains the IP and GNP coordinates for all nodes in its square,
which raises the concern of scalability at higher-order squares. Indeed, this concern is one of the
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reasons that led us to develop the alternative DHT-based approach (Section 3.4). Nevertheless,
because of its simplicity, the GNP-based approach is still viable for small- to medium-sized
systems.

To look up the GNP coordinates of a node X given its IP, a querying node first contacts the
GNP server for its order-0 square. If the GNP server does not find X in its square, it forwards
the request to a higher-order GNP server. The process continues until X is found at a GNP
server; in general, it will be the GNP server for the lowest-order square containing both X and
the querying node.

To locate the closest candidate cache of an owner O, the querying node follows the same
procedure as looking up O. The GNP server that finds O can evaluate the k-nearest mapped
cache locator function to find the candidate cache of O in the subsquare containing the querying
node. This candidate cache is the closest in the sense that it is the only candidate cache of O in
that subsquare.

GNP servers also support declarative specification of query regions in the GNP space, e.g.,
“all nodes within a distance of 10 from a given point in GNP space.” We omit the details for
lack of space.

We aggressively cache the results of GNP-related lookups to improve performance and pre-
vent overload of higher-order GNP servers. This technique is reminiscent of DNS caching.

Operational details. To answer a query for a set of measurements, the querying node first
looks up the closest candidate cache for each owner of the requested measurements using GNP
servers, as discussed earlier. The lookup requests and replies are aggregated, so regardless of
the number of measurements requested, there are no more than 2h such messages per query,
where h is the number of levels in the GNP server hierarchy. Next, the querying node contacts
the set of candidate caches; there are hopefully much fewer of them than the owners, because
our cache locator function exploits locality in query regions. If a measurement is not found in
the candidate cache or the cached bound is not acceptable, the request will be forwarded to the
owner.

Each candidate cache decides on its own whether to cache a measurement and what bound
to use. The decision is made using a cost/benefit analysis based on the request and update rates.
We omit the details here because a similar (and more complex) analysis used by the DHT-based
approach will be covered in detail in Section 3.4.2.

The owner is directly responsible for maintaining all caches of its measurement, using the
procedure described in Section 3.2. As also noted in Section 3.2, we use a timeout mechanism
to handle failures.
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Figure 4: Two-way aggregation with Pastry. Figure 5: Splicing: add/remove a cache.
3.4 DHT-Based Adaptive Caching
3.4.1 Background on DHTs.

An overlay network is a distributed system whose nodes establish logical neighbor relationships
with some subset of global participants, forming a logical network overlayed atop the IP sub-
strate. One type of overlay network is a Distributed Hash Table (DHT). As the name implies, a
DHT provides a hash table abstraction over the participating nodes. Nodes in a DHT store data
items; each data item is identified by a unique key. An overlay routing scheme delivers requests
for a key to the node responsible for storing the data item with that key. Routing proceeds in
multiple hops and is done without any global knowledge: Each node maintains only a small
set of neighbors, and routes messages to the neighbor that is in some sense “closest” to the
destination.

Pastry [47] is a popular DHT that takes network proximity into account while routing mes-
sages. A number of properties of Pastry are relevant to our system. The short-hops-first prop-
erty, a result of locality-aware routing, says that the expected distance traveled by a message
during each successive routing step increases exponentially. The short-routes property says
that the average distance traveled by a Pastry message is within a small factor of the network
distance between the message’s source and destination. The route-convergence property con-
cerns the distance traveled by two messages sent to the same key before their routes converge.
Studies [47] show that this distance is roughly the same as the distance between the two source
nodes. These properties provide us a natural way to aggregate messages originated from close-
by nodes.

3.4.2 Overview of caching with Pastry.

Our basic idea is to leverage a locality-aware DHT such as Pastry in building a caching infras-
tructure where two types of aggregation naturally take place. One type of aggregation happens
on the owner side: Close-by owners select same caching nodes nearby, allowing us to exploit
the spatial locality of measurements involved in region-based queries. The other type of ag-
gregation happens on the querying node side: Close-by querying nodes can also find common
caches nearby, allowing us to exploit the spatial locality among querying nodes.
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Suppose that all nodes route towards a randomly selected root using Pastry. The Pastry
routes naturally form a tree T (with bidirectional edges) exhibiting both types of aggregation,
as illustrated in Figure 4. Queries first flow up the tree following normal (forward) Pastry
routes, and then down to owners following reverse Pastry routes. Nodes along these routes are
natural candidates for caches. Our system grows and shrinks the set of caches based on demand,
according to a cost/benefit analysis using only locally maintained information. The operational
details of our system are presented next. We do not discuss cache updates because the process
is similar to that described in Section 3.2 (see [16] for details).

Initialization. A primary objective of the initialization phase is to build the structure T . While
Pastry itself already maintains the upward edges (forward Pastry hops), our system still needs
to maintain the downward edges (reverse Pastry hops). To this end, every node in T maintains,
for each of its child subtree in T , a representation of the set of nodes found in that subtree,
which we call a subtree filter. Subtree filters are used to forward messages on reverse Pastry
paths, as we will discuss later in connection with querying. Nodes at lower levels can afford to
maintain accurate subtree filters because the subtrees are small. Nodes at higher levels, on the
other hand, maintain lossy subtree filters implemented with Bloom filters [8].

During the initialization phase, after the overlay network has been formed, each node in the
system sends an INIT message containing its IP address towards the root. Each node along the
path of this message adds the node IP to the subtree filter associated with the previous hop on
the path. As an optimization, a node can combine multiple INIT messages received from its
children into a single INIT message (containing the union of all IP addresses in the messages
being combined), and then forward it.

Querying. When a query is issued for a set of measurements, the querying node routes a READ
message towards the root via Pastry. This message contains the IP address of the querying node
and the set of measurements requested (along with acceptable bounds). When a node N receives
a READ message, it checks to see if it can provide any subset of the measurements requested. If
yes, N sends back to the querying node a READ REPLY message containing these measurement
values (with cached bounds and timestamp, if applicable). If all requested measurements have
been obtained, we are done. Otherwise, let O denote the set of nodes that own the remaining
measurements. N checks each of its subtree filters Fi: If O ∩ Fi 6= ∅, N forwards the READ

message to its i-th child with the remaining measurements owned by O ∩ Fi (unless the READ

message received by N was sent from this child in the first place). Note that messages from N

to its children follow reverse Pastry routes. Finally, if the READ message received by N was sent
from a child (i.e., on a forward Pastry route), N also forwards the READ message to its parent
unless N is able to determine that all requested measurements can be found at or below it.

As a concrete example, Figure 4 shows the flow of READ messages when node N1 queries
measurements owned by O1, O2, and O3, assuming that no caching takes place. If node N2

happens to cache measurements owned by O1 and O2, then messages 7 through 9 will be saved.
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It is possible to show that our system attempts to route queries towards measurement owners
over T in an optimal manner. The following proposition shows that our system attempts to
route queries towards measurement owners over T in an optimal manner.

Proposition 1 If no subtree filters produce any false positives, then all nodes involved in pro-
cessing a request for measurements owned by a set of nodes O belong to the minimal subgraph
of T (in terms of number of edges) spanning both O and the querying node.

On false positives. As discussed in Section 3.4.2, nodes at lower levels of T can afford to
maintain accurate subtree filters without false positives. However, at higher levels, Bloom filters
may produce false positives, so it is possible that S ∩ Fi 6= ∅ even though the i-th subtree
actually does not contain any node in S . In that case, some extraneous READ messages are
forwarded, but they do not affect the correctness of the query result. Furthermore, there are
few such messages because Bloom filters are only used at higher levels, and the rate of false
positives can be effectively controlled by tuning the size of these filters.

Adding and Removing Caches. Each node in our system has a cache controller thread that
periodically wakes up and makes caching decisions. We first describe the procedures for adding
and removing a cache of a measurement.

Suppose that a node N decides to start caching a particular measurement m. Let Pm denote
the first node that can be N ’s cache provider on the shortest path from N to the owner of m in
T . Let Cm denote the subset of Pm’s child caches whose shortest paths to Pm go through N .
An example of these nodes is shown in Figure 5. After N caches m, we would like Pm to be
responsible for updating N , and N to take over the responsibility of updating Cm, as illustrated
in Figure 5 on the right. Note that at the beginning of this process, N does not know what
Pm or Cm is. To initiate the process, N sends a SPLICE IN message over T , along the same
path that a READ request for m would take. Forwarding of this message stops when it reaches
Pm, the first node who can be a cache provider for m. We let each cache provider record the
shortest incoming path from each of its child caches; thus, Pm can easily determine the subset
Cm of its child caches by checking whether the recorded shortest paths from them to Pm go
through N . Then, Pm removes the guarantee entries and shortest paths for Cm; also, Pm adds
N to its guarantee list and records the shortest path from N to Pm. Next, Pm sends back to
N a SPLICE IN OK message containing the current measurement value and timestamp stored
at Pm, as well as the removed guarantee entries and shortest paths for Cm. Upon receiving this
message, N caches the measurement value, adds the guarantee entries to its guarantee list, and
records the shortest paths after truncating their suffixes beginning with N . Finally, N sends
out a SPLICE IN OK message to each node in Cm to inform it of the change in cache provider.
The cache removal procedure uses SPLICE OUT and SPLICE OUT OK messages. It is similar to
cache addition and slightly simpler (see [16] for a detailed description).
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It can be shown that, in the absence of false positives in subtree filters, a cache update
originated from the owner would be sent over a minimal multicast tree spanning all caches if
update messages were routed over T .

Caching Decisions. Periodically, the cache controller thread at N wakes up and makes caching
decisions. For each measurement m that N has information about, the thread computes the
benefit and cost of caching m. We break down the benefit and cost of caching m into four
components: (1) Bread (m) is the benefit in terms of reduction in read traffic. For each READ

message received by N requesting m, if m is cached at N , we avoid the cost of forwarding the
request for m, which will be picked up eventually by the node that either owns m or caches m,
and is the closest such node on the shortest path from N to m’s owner in T . Let dm denote the
distance (as measured by the number of hops in T ) between N and this node. The larger the
distance, the greater the benefit. Thus, Bread (m) ∝ dm × Hm, where Hm is the request rate of
m at node N . (2) Bupd (m) is the net benefit in terms of reduction in update traffic. It’s compu-
tation requires the maintenance of a large number of parameters; hence we approximate it to be
proportional to the reduction in update cost from the cache provider Pm’s perspective (see [16]
for details). (3) Cupd (m) is the cost in terms of resources (processing, storage, and bandwidth)
incurred by N for maintaining its child caches for m. (4) Ccache(m) is the cost incurred by N

for caching m (other than Cupd (m)). We omit the details of these last three components and
refer the interested reader to [16].

Given a set M of candidate measurements to cache, the problem is to determine a subset
M′ ⊆ M that maximizes

∑

m∈M′

(

Bread (m) + Bupd (m)
)

subject to the cost constraints that
∑

m∈M′ Cupd (m) ≤ Tupd , and
∑

m∈M′ Ccache(m) ≤ Tcache . Here, Tupd specifies the maxi-
mum amount of resources that the node is willing to spend on maintaining its child caches, and
Tcache specifies the maximum cache size. This problem is an instance of the multi-constraint
0-1 knapsack problem. It is expensive to obtain the optimal solution because our constraints are
not small integers; even the classic single-constraint 0-1 knapsack problem is NP-complete. So,
we use a greedy algorithm by defining the pseudo-utility of caching m as

Bread (m) + Bupd (m)

Cupd (m)/Tupd + Ccache(m)/Tcache

.

It is basically a benefit/weighted-cost ratio of caching m. The greedy algorithm simply decides
to cache measurements with highest, non-negative pseudo-utility values above some threshold.
Caches are added and removed as described earlier.

Maintaining statistics. We now turn to the problem of maintaining statistics needed for mak-
ing caching decisions. For measurements currently being cached by N , we can easily maintain
all necessary statistics with negligible overhead by piggybacking the statistics on various mes-
sages. A more challenging problem is how to maintain statistics for a measurement m that is
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not currently cached at N . Maintaining statistics for all measurements in the system is simply
not scalable. Ignoring uncached measurements is not an option either, because we would be
unable to identify good candidates among them. In classic caching, any miss will cause an item
to be cached; if it later turns out that caching is not worthwhile, the item will be dropped. How-
ever, this simple approach does not work well for our system because the penalty of making a
wrong decision is higher: Our caches must be actively maintained, and the cost of adding and
removing caches is not negligible.

Fortunately, from the cost/benefit analysis, we observe that a measurement m is worth
caching at N only if N sees a lot of read requests for m or there are a number of frequently
updated caches that could use N as an intermediary. Hence, we focus on monitoring statistics
for these measurements, over each observation period of a tunable duration. For example, the
request rate Hm is maintained by N for each m requested during the observation period; request
rates for unrequested, uncached measurements are assumed to be 0. Our techniques to estimate
update rates and dm over the observation period are more complex. More details on scalable
maintenance of statistics are described in [16].

Overall, the space needed to maintain statistics for uncached measurements is linear in the
total number of measurements requested plus the total number of downstream caches updated
during an observation period. Thus, the amount of required space can be controlled by adjusting
the observation period length.

3.5 Discussion
Comparison of two caching schemes. The DHT-based adaptive caching approach has a

number of advantages over the GNP-based controlled caching approach. First, GNP servers
carry potentially much higher load than other nodes in the system. As discussed in Section 3.3,
a GNP server needs to maintain precise knowledge about all nodes within its hyper-rectangle in
order to locate the cache for a given owner. Thus, the amount of space required by GNP servers
at higher levels is Θ(n), where n is the total number of nodes in the system. In contrast, rout-
ing and locating caches in the DHT-based approach does not depend on centralized resources.
Forward Pastry routing requires only O(log n) state [47]; reverse Pastry routing requires sub-
tree filters, but since false positives are tolerable, we can use Bloom filters whose sizes can be
effectively controlled.

Second, the cache selection scheme used by the DHT-based approach is more dynamic and
workload-aware than the GNP-based controlled caching approach. The controlled approach
fails to exploit potential locality among querying nodes at runtime. It is possible for a number of
close-by nodes to request the same faraway owner over and over again, yet still not find a cache
nearby, because by design there will be fewer candidate caches farther from the owner, and
the static cache selection scheme will not adapt to the query workload. In contrast, the DHT-
based adaptive caching approach will select a cache nearby as soon as the combined request
rate from all querying nodes makes caching cost-effective. This analysis will be confirmed by
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experiments in Section 3.6.
Third, the GNP-based controlled caching approach restricts the amount of caching at any

node by design. While it is reasonable to avoid overloading a node with caching responsibilities,
implementing this objective using a static scheme precludes opportunities for certain runtime
optimization. For example, suppose that a large region of owners are being queried over and
over again. If a node has enough spare capacity, we should let it cache for all owners, so that
a query can be answered by contacting this node alone. With the GNP-based approach, it is
impossible by design for a large region of owners to select the same cache. In contrast, with
the DHT-based approach, a common ancestor of all owners in T can potentially cache for all of
them. Experiments in Section 3.6 confirm this analysis.

On the other hand, the GNP-based approach also has some advantages over the DHT-based
approach. First, the GNP-based approach has simpler protocols and requires less effort to im-
plement. Second, GNP coordinates allow better and more direct control over how locality is
exploited; the DHT-based approach has to rely on Pastry to exploit locality indirectly, which
may be less effective in small systems since Pastry would have to work with a very small num-
ber of routing alternatives.

On alternative definitions of regions. So far, we have been assuming that query regions
exhibit locality in terms of network proximity. As mentioned in Section 3.2, applications may
use alternative definitions of query regions. Each node can be described by a vector of features.
The distance between two nodes can be defined by the distance between their respective feature
vectors in the feature vector space. A query region tends to contain nodes with similar features,
i.e., those are nearby in the feature vector space. We can adapt our techniques to work with an
application-defined space and distance metric. For example, in case of the DHT-based approach,
we can use a second instance of Pastry to construct another tree Tapp over the same of nodes
using the application-defined distance metric. To process a query, we first route it upwards in the
regular Pastry tree T constructed based on network proximity, which allows network locality
among querying nodes to be exploited. After several hops, we send the query directly to one
of the owners being queried. Then, we process the query over Tapp as if it originated from this
owner, using the exact same procedure described in Section 3.4.2 (except on Tapp instead of T ),
which allows locality among owners in the application-defined space to be exploited.

3.6 Experiments and Results
Implementation. We have implemented both the GNP-based and the DHT-based approaches.

For the DHT-based approach, we use the MACEDON [46] implementation of Pastry. MACE-
DON is an infrastructure for designing and implementing robust networked systems; it allows
us to plug in different DHT implementations without changing the rest of the code. Our imple-
mentation of the DHT-based approach on top of MACEDON consists of around 4500 lines of
C++ code.
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3.6.1 Experimental setup.

We have implemented the GNP- and the DHT-based approaches. We conduct our experiments
over ModelNet [56], a scalable and highly accurate Internet emulation environment. We em-
ulate 20,000-node INET [17] topologies with a subset of nodes participating in measurement
and querying activities. We report results for subsets with 250 nodes acting as both owners and
querying nodes. These nodes are emulated by twenty 2.0GHz Intel Pentium 4 edge emulation
nodes running Linux 2.4.27. All traffic passes through a 1.4GHz Pentium III core emulation
node running FreeBSD-4.9.

While all results presented here use an emulated network, we have also deployed our system
(with around 50 nodes) over PlanetLab [41]. Note that the number of owners and querying
nodes in our experiments is not constrained by the system’s scalability, but rather by the hard-
ware resources available for deploying it over an emulated network. The advantage of deploying
a full system over an emulated network is that it ensures that all costs are captured and we do not
inadvertently miss out any important effects or interactions. As future work, we plan to develop
a simpler simulation-based evaluation, which would allow us to demonstrate larger experiments
at the expense of some realism.

3.6.2 Workloads.

We wish to subject our system to workloads with different characteristics that may represent
different application scenarios. To this end, we have designed a workload generator to produce
a mix of four basic types of “query groups.” The four types of query groups are: (1) Near-
query-near- owner (NQNO): A set of nq nearby nodes query the same set of no owners that
are near one another (not necessarily close to the querying nodes). This group should benefit
most from caching, since there is locality among both querying nodes and queried owners. (2)
Near-query-far-owner (NQFO): A set of nq nearby nodes query the same set of no owners that
are randomly scattered in the network. There is good locality among the querying nodes, but
no locality among the queried owners. (3) Far-query-near-owner (FQNO): A set of nq distant
nodes query the same set of no owners that are near one another. This group exhibits good
locality among the queried owners, but no locality among the querying nodes. (4) Far-query-
far-owner (FQFO): A set of nq nodes query the same set of no owners; both the querying nodes
and the queried owners are randomly scattered. This group should benefit least from caching.

A workload [a, b, c, d] denotes a mix of a NQNO query groups, b NQFO query groups, c

FQNO query groups, and d FQFO query groups. All query groups are generated independently.
Each workload is further parameterized by nq and no, the number and the size of queries in
each group, and p, the period at which the queries will be reissued.

In this document, we experiment with synthetic measurements, each generated by a random
walk where each step is drawn from a normal distribution with mean 0 and standard deviation
σ. If σ is large, bounds on this measurement will be violated more frequently, resulting in
higher update cost. Synthetic measurements allow us to experiment with different update char-
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Figure 6: Traffic vs. time. Figure 7: Traffic vs. cache
size.

Figure 8: Adapt to volatility.

acteristics easily. Experiments with real node-to-node latency measurements demonstrate the
effectiveness of bounded approximate caching, and are presented in [16].

3.7 Results for the DHT-Based Approach
3.7.1 Advantage of caching.

To demonstrate the advantage of caching, we run a workload W1 = [1, 1, 1, 1] for 1000 sec-
onds, with nq = 4, no = 10, and p = 16 seconds. Effectively, during each 16-second interval,
there are a total of 16 nodes querying a total of 40 owners, with each query requesting 10 mea-
surements. This workload represents an equal mix of all four types of query groups, with some
benefiting more than others from caching. The measurements in this experiment are synthetic,
with σ = 7. Bounds requested by all queries are [−10, 10]. During the experiment, we record
both foreground traffic, consisting of READ and READ REPLY messages, and background traffic,
consisting of all other messages including splice messages and CACHE UPDATE messages.

Figure 6 shows the behavior of our system over time, with the size of each cache capped
at 100 measurements (large enough to capture the working set of W1). We also show the
behavior of the system with caching turned off. The message rate shown on the vertical axes
is the average number of messages per second generated by the entire system over the last
16 seconds (same as the period of monitoring queries). From Figure 6, for cache size 100

we see that after a burst of foreground traffic when queries start running, there is an increase
in the background traffic as nodes decide to cache measurements. Once caches have been
established, the foreground traffic falls dramatically due to the caches. As the set of caches in
system stabilizes, the background traffic also reduces to mostly CACHE UPDATE messages. On
the other hand, with caching turned off (cache size 0) we see that the foreground traffic remains
very high at all times (there is no background traffic). The high foreground traffic outweighs
the benefit of having no background traffic. In sum, caching is extremely effective in reducing
the overall traffic in the system.

Figure 7 compares the performance of the system under different cache sizes (in terms of
the maximum number of measurements allowed in the cache of each node). We show the total
number of foreground and background messages generated by the system over the length of
the entire experiment (1000 seconds). As the cache size increases, the overall traffic decreases,
although the benefit diminishes once the caches have grown large enough to hold the working
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Figure 9: Traffic vs.
percentage of queries
from nearby nodes.

Figure 10: Traffic vs.
percentage of queries
to nearby owners.

Figure 11: Compari-
son of average query
latency.

Figure 12: Compari-
son of total traffic.

set. Another interesting phenomenon is that for very small cache sizes, the background traffic is
relatively high because of more splice operations caused by thrashing. Nevertheless, our system
is able to handle this situation well.

3.7.2 Adapting to volatility in measurements.

In this experiment, we use the same workload W1 with cache size 100. We gradually increase
the volatility of measurements by increasing the standard deviation σ of the random walk steps
every 500 seconds. For the requested query bound of [−10, 10], we effectively increase the
update rate from 0.0 to 3.0 updates per second. The result of this experiment is shown in Fig-
ure 8. Initially, with a zero update rate, there is no cost to maintaining a cache, so all frequently
requested measurements are cached, resulting in low foreground and background traffic. As
we increase the update rate, however, the background traffic increases. This increase in cache
update cost causes nodes to start dropping cached measurements; as a result, the foreground
traffic also increases. Eventually, the update rate becomes so high that it is no longer beneficial
to cache any measurements. Thus, the background traffic drops to zero, while the foreground
traffic increases to the level when there is no caching (cf. Figure 6). To summarize, our system
only performs caching if it leads to an overall reduction in total traffic; consequently, the total
traffic in the system never rises above the level without caching. This shows that our system is
able to adapt its caching strategy based on the volatility of measurements.

3.7.3 Aggregation effects.

The next two sets of experiments demonstrate that our system can exploit locality in both query-
ing nodes and queried owners. To illustrate aggregation on the querying node side, we perform
a series of experiments using five workloads, [0, 0, 2, 2], [1, 0, 2, 1], [2, 0, 2, 0], [2, 1, 0, 1], and
[2, 2, 0, 0], where the percentage of queries issued from nearby nodes increases from 0% to
100%. We set nq = 5 and no = 4 for these five workloads. From the results in Figure 9, we see
that the total traffic reduces as the percentage of queries from nearby nodes increases. Figure 10
shows the second set of experiments that illustrate owner-side aggregation by using five work-
loads where the percentage of queries requesting nearby owners increases from 0% to 100%.
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We again see that the total traffic reduces as the percentage of queries requesting nearby owners
increases. These experiments show that our system derives performance benefits by exploiting
locality both among querying nodes and in query regions.

3.7.4 Comparison with the naive and GNP approaches.

Figure 11 compares the average query latency (as measured by the average time it takes to
obtain the requested measurement, after all caches have been created) for a simple workload that
exhibits locality among querying nodes. For baseline comparison, we also measure the average
query latency of a naive approach, where each querying node simply contacts the owner directly
for the measurement. From the figure, we see that the DHT-based approach has the lowest query
latency, while the GNP-based approach performs a little worse, but both outperform the naive
approach. Figure 12 compares the total network traffic generated by the system while processing
a workload in which five querying nodes repeatedly query a faraway set of 12 nearby owners
over 480 seconds, using the naive, GNP-based, and DHT-based approaches. Again, the DHT-
based approach outperforms the other two approaches as it exploits querying node side locality
effectively.

3.8 Conclusions
In this work, we tackle the problem of querying distributed network measurements, with an
emphasis on supporting set-valued queries using bounded approximate caching of individual
measurements. We focus on efficient and scalable techniques for selecting, locating, and man-
aging caches across the network to exploit locality in queries and tradeoff between query and
update traffic. We have proposed, implemented, and evaluated a DHT-based adaptive caching
approach and compared it with a GNP-based controlled caching approach. Experiments over a
large-scale emulated network show that our caching techniques are very effective in reducing
communication costs and query latencies while maintaining the accuracy of query results at an
acceptable level. The DHT-based approach is shown to adapt well to different types of work-
loads. In addition to temporal locality in the query workload, the approach is able to exploit
spatial localities in both querying nodes and measurements accessed by region-based queries.

Although the results are promising, techniques described in this work represent only the first
steps towards building a powerful distributed network querying system. As future work, we
plan to investigate the hybrid approach of combining query shipping and data shipping, and
consider more sophisticated caching schemes such as semantic caching [19].
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4 The Database/Network Interface
4.1 Introduction
As mentioned in Section 2.2, the bulk of the work performed by a publish/subscribe system
can be roughly divided into two components: (1) subscription processing, the task of matching
and processing each incoming publish message with the large set of active subscriptions, and
(2) notification dissemination, the task of notifying, over a network, those subscribers who are
interested in the publish message. Previous work from the database research community has fo-
cused on efficient subscription processing; notification dissemination is rarely addressed. Most
existing work assumes that a server maintains the entire database state and all subscriptions in
the system, and is responsible for computing the set of subscribers affected by each incoming
publish message. A straightforward way to notify this set of subscribers is to unicast a notifica-
tion to each of them in turn. When many subscribers need to be notified, this approach will incur
a large amount of outbound traffic from the server, and may easily overwhelm the server and
its network links. On the other hand, the networking research community has always focused
on efficient notification dissemination. Notable mechanisms include multicast [3] and content-
based networking [10]. Both mechanisms, however, support only stateless subscriptions, i.e.,
those that can be processed by examining the message itself. For multicast, a message’s group
id encodes its forwarding directions. For content-based networking, the message tuple contains
all the information needed to forward the message.

Traditional publish/subscribe systems have simple subscription languages that support only
stateless subscriptions. In many situations, however, users may want updates to be further
transformed, correlated, and/or aggregated. For example, with a range-aggregate subscription,
a user can track the minimum PER (price-to-earning ratio, a popular measure of stock quality)
of stocks within a risk range. This subscription is stateful, because just by looking at a stock
update message, the system cannot always tell whether or how the message would affect the
subscription. To meet the needs of these users, we are developing a wide-area publish/subscribe
system that supports complex subscription definitions. In Section 2, we motivated the chal-
lenges in supporting such subscriptions using several examples, and previewed several possible
implementation approaches.

The examples showed that efficient support of stateful subscriptions is a challenging problem
for wide-area publish/subscribe systems. On one hand, existing network dissemination mecha-
nisms do not support stateful subscriptions directly. While it is possible to relax a stateful sub-
scription into a stateless one and rely on subscribers to perform additional local post-processing,
doing so requires unnecessarily large amounts of local subscription state and high volumes of
notifications. On the other hand, while the database-centric approach can easily process stateful
subscriptions at a server, disseminating notifications over a wide-area network remains difficult
because of the inefficiency of unicasts and the difficulty in interfacing the server with advanced
network dissemination mechanisms such as multicast and content-based networking.
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In this work, we argue that the key to the solution lies in properly interfacing the database
with the network, in order to combine the processing power of database servers and the dissem-
ination power of the network effectively. In general, there is a wide spectrum of possibilities
for interfacing the database with the network and for dividing up work between them. These
possibilities provide an interesting set of trade-offs in terms of efficiency, scalability, and man-
ageability of the system. To the best of our knowledge, there is no prior work that investigates
this spectrum of database/network interaction models comprehensively. This unified perspec-
tive from both databases and networking enables us to identify interesting hybrid solutions
that outperform approaches that are either database-centric or network-centric. Specifically, we
make the following contributions:

• We explore a number of points along the spectrum of possibilities for interfacing database
processing and network dissemination, and study their trade-offs. We show that efficient
support of stateless subscriptions in a wide-area publish/subscribe system calls for hybrid
solutions with novel database/network interfaces. We demonstrate through experiments
with synthetic and real stock datasets that our hybrid solutions offer orders-of-magnitude
performance improvement over approaches that are either database-centric or network-
centric.

• We formalize message and subscription reformulation as a general mechanism for imple-
menting stateful subscriptions using a dissemination network that supports only stateless
subscriptions. Reformulation allows us to keep a simple and clean interface between
the database and the network, while at the same time providing a comparable or higher
level of efficiency compared with much more complex system configurations that require
application-specific extensions to routing. We have developed reformulation techniques
for a number of stateful subscriptions types including range aggregation/DISTINCT and
joins.

• For range-min subscriptions, we proposed a reformulation technique based on the concept
of Mar (Maximum Affected Range). New data structures and group processing algorithms
for this technique were developed in [15]. These techniques are also applicable in pro-
cessing a group of continuous range-min/max queries, which is an interesting problem in
its own right.

To recap, the combination of (1) cooperative processing and dissemination by the database and
the network, (2) a clean, easy-to-implement database/network interface, and (3) efficient server-
side data structures and algorithms together provide an efficient platform for supporting stateful
subscriptions over a wide-area network.

The remainder of this section is organized as follows. Section 4.2 discusses various methods
for interfacing the database with the network, including database-centric, network-centric, and
hybrid approaches. Message/subscriptions reformulation and Mar are introduced in the context
of the hybrid approach (Section 4.2.4). We concentrate on describing how to support range-min
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subscriptions in this section, and briefly discuss other stateful subscriptions in Section 4.3. Sec-
tion 4.4 covers additional details of system implementation and presents experimental results.
Section 4.5 presents our concluding remarks.

4.2 Spectrum of Server/Network Interfaces
This section explores the spectrum of possibilities for interfacing servers with a network in order
to support stateful subscriptions efficiently. We start with a brief discussion of the database-
centric approach in Section 4.2.2. Then, Section 4.2.3 discusses the network-centric approach,
together with some background on content-based networking and intuition behind how updates
affect subscriptions, which are useful also in later discussions. Section 4.2.4 describes one of
our main results—a hybrid approach that supports closer cooperation between servers and the
network using message/subscription reformulation.

4.2.1 Preliminaries

The publish/subscribe system we are building offers a conceptual (and possibly virtual) database
over which users can define subscriptions as SQL views. Publish messages are updates to the
database. If a database update causes the content of a subscription view to change, we say
that the database update (publish message) affects the subscription; in this case, the system
needs to send the subscriber a notification message containing the change to the content of the
subscription view.

To keep our discussion focused, we concentrate in this section on supporting range-min
subscriptions. These subscriptions are useful in many situations where users are interesting
in tracking the “best” objects in ranges of their interest, e.g., stocks with the lowest price-to-
earning ratios within a risk range, or lowest-priced digital cameras with at least 4.0 megapixels.
The various server/network interface approaches and the message/subscription reformulation
mechanism that we are going to present later are completely general; however, the actual refor-
mulation technique may vary for different subscription types. We discuss how to handle other
subscription types in Section 4.3.

Before proceeding, we give a classification of database updates based on how they affect
range-min subscriptions. To make our discussion concrete, recall from the examples in Sec-
tion 2 the database table

STOCK (SYMBOL, RISK, PER, . . .)

and range-min subscriptions of the form

SELECT MIN(PER) FROM STOCK WHERE x1 <= RISK AND RISK <= x2.

We call RISK the range attribute and PER the aggregation attribute. To simplify discussion
in this section, we further restrict ourselves to updates of the aggregation attribute (PER) only.
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Insertions, deletions, and updates to other attributes require fairly straightforward extensions,
details of which are presented in [15]. Let ∆(t : x, yo → yn) denote an update of a stock t (with
risk x) that changes PER from yo to yn. This update falls into one of the following categories:

• Ignorable updates. These are updates that, given the current state of the database, cannot
possibly affect any subscriptions. In our running example, ∆(t : x, yo → yn) is ignorable
if there exists another stock t′ with the same risk x and a PER no higher than both yo and
yn. For example, the update of t7 in Figure 1 is ignorable because of t6.

• Non-ignorable updates. These are updates that may affect some subscription (i.e. they
are not ignorable). They are further classified into two types:

– Bad updates. These are non-ignorable updates whose effects on affected subscrip-
tions cannot be determined from the content of the update itself; additional informa-
tion from the database is required. In our running example, a non-ignorable update
∆(t : x, yo → yn) is bad if it might “expose” a new minimum PER in some risk
range. The update of t5 in Figure 1 is an example of a bad update because it exposes
both t3 and t6. The effect of a bad update cannot be inferred from the content of the
update alone; additional information from the database is required.

– Good updates. A good update is a non-ignorable update that is not bad, i.e., its effect
on any affected subscription can be determined from the content of the update itself.
In our running example, a non-ignorable update ∆(t : x, yo → yn) is good if no
other minimum PER is exposed due to that update. The update of t4 in Figure 1 is
an example of a good update.

To recap, a decreasing update can be ignorable or good, whereas an increasing update can be
ignorable, bad, or occasionally good. Note that this classification scheme does not take into
account what subscriptions are currently in the system. Such information can be exploited for
more efficiency (e.g., if there are no subscriptions, all updates are effectively ignorable), but
doing so also incurs some extra overhead; we discuss this point further in Section 4.2.4.

4.2.2 Database-Centric Approaches

In this set of approaches, we follow the traditional database-centric view of publish/subscribe—
of first computing the updates to each subscription, and then disseminating these updates. We
assume that a single server maintains the database state and keeps track of all subscriptions.
For each publish message, we can efficiently compute all subscription updates in time sublinear
in the size of the database and the number of subscriptions, using the group-processing tech-
niques presented in [15]) The approaches below differ mainly in how subscription updates are
disseminated.
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S-UN: Server with Unicast Network With this approach, which we call S-UN, the server
unicasts a subscription update message to each affected subscription. For our running example,
the message has a constant size, and simply contains the new minimum PER for the subscription.
The problem with this approach is that when many subscriptions are affected, there will be a
large amount of traffic overall, and the server can easily become a bottleneck of dissemination.

If multiple affected subscriptions are hosted by the same node in the network, an additional
optimization is for the server to combine multiple messages into one. This technique, which we
call message aggregation, reduces the number of messages. However, the size of a combined
massage would no longer be constant; instead, it becomes linear in the number of affected sub-
scriptions at the node. The reason is that the message needs to list the affected subscriptions
(because not all subscriptions at the node may be affected) and possibly multiple subscription
updates (because different subscriptions may be affected differently by the same database up-
date, as shown in the example in Section 2.1).

S-MN: Server with Multicast Network Multicast [3] is an efficient mechanism for dis-
seminating messages to a group of network destinations. Ideally, we would define a multicast
group for each subset of the subscriptions. After the server computes all subscription updates,
it checks to see which subset of the affected subscriptions share the same update message, and
sends out this message to the multicast group consisting precisely of these subscriptions. How-
ever, both IP multicast [3] and application-level multicast [11] techniques do not handle the
need for large number of groups (up to 2M for M subscriptions).

In this work we resort to hierarchical application-level multicast. This method builds a tree
rooted at the server spanning all nodes hosting subscriptions, with a moderate fan-out c. Each
non-leaf node and its children together form a multicast network with 2c multicast groups, each
supporting efficient application-level multicast from the node to a subset of its children. Thus,
this method avoids the problem of having too many multicast groups by breaking down the
dissemination task into a hierarchy of much smaller multicasts with group number capped at
2c. The cost of doing so is that the update message sent out by the server must list the set of
affected subscriptions; otherwise, a non-leaf node would not be able to tell which children to
forward the message to.

We call the above approach S-MN. The problems with using multicast for publish/subscribe
(large number of groups and large message size) have also been identified by other work [6,
38, 40]. Possible solutions are: (1) Reduce number of groups [38] by approximating group
membership in which case post-processing and additional state are needed at subscribers. We
have considered some of these techniques, but the details are beyond the scope of this document.
(2) Use compact, “semantic” descriptions of affected subscriptions [6, 40] to avoid large update
messages. This approach gives a content-based network (that still does not handle stateful
subscriptions), which we consider next.
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Figure 13: Space of range subscriptions.

4.2.3 Network-Centric Approaches

At the other end of the spectrum, we have approaches that avoid the use of servers altogether
by making the network handle as much subscription processing as possible. As discussed in
Section 4.1, a natural starting point is a content-based network [10], which supports stateless
subscriptions defined as predicates over the content of each message. Information about sub-
scriptions is reflected in the distributed routing state of the network, which allows an update to
be forwarded to affected subscriptions without intervention of servers. We now explore how to
extend basic content-based networking to support stateful subscriptions.

Background on Content-Based Networking Content-based networks can be implemented
using various techniques. Since the section focuses on range and range-min subscriptions, we
discuss an implementation based on a Content Addressable Network (CAN) [44] similar to
Meghdoot [25]. Meghdoot is designed to support only range subscriptions; we later demon-
strate how to extend it in different ways to support range-min subscriptions. At the heart of
Meghdoot is a CAN constructed as follows. Each attribute used in range selection (e.g., RISK
in our running example) is mapped to two dimensions in the CAN space, one for the low end of
the range and the other for the high end. A range subscription can then be represented as a point
in this space. Figure 13 illustrates a 2-d CAN, where each single-attribute range subscription
over [low i, high i] is mapped to the point (low i, high i). The space is partitioned into rectangular
zones, each with a zone owner—an network node responsible for all the subscriptions in its
zone. Each zone has knowledge of only its neighbors and can route messages only to them.
Routing is carried out in multiple hops until the destination is reached.

Meghdoot notifies affected range subscriptions as follows. Consider an update to a tuple
whose range attribute value is x. The affected range subscriptions are precisely those in the
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upper-left quadrant rooted at the point (x, x) (shown as a shaded region in Figure 13). Sub-
scriptions inside this quadrant are affected because their ranges contain x; subscriptions outside
this quadrant are unaffected because their ranges do not contain x. Hence, Meghdoot first routes
the update message towards the point (x, x) which is called the event point; the zone owner of
that point then forwards this message to the neighboring zone owners in the affected quadrant,
which in turn forward the message upward and leftward to their neighbors, and so on. CAN
provides a convenient substrate to implement this forwarding algorithm. Further details of this
algorithm can be found in [25].

CN: Serverless Content-Based Network The straightforward way to support stateful
subscriptions using a content-based network, as already discussed in the example in Section 2.2,
is to “relax” them into stateless subscriptions directly supported by the network. We call this
approach CN. For our running example, Meghdoot can be used to support the stateless RISK-
range subscriptions relaxed from the stateful min-PER-over-RISK-range subscriptions. Each
subscriber locally maintains the content of the stateless subscription queries, and uses post-
processing to derive updates to the stateful subscriptions.

The advantage of CN is its simplicity: We only need to extend the capability of the sub-
scribers; the network substrate remains unchanged. The system does not require a central server,
thereby removing a potential bottleneck. The disadvantages of CN are obvious too. All updates
within the RISK range are sent to the subscriber, even though most of them may be ignorable
in practice. Also, to cope with bad updates, each subscriber must maintain all stocks within its
RISK range, which is rather costly.

CN
+: CN with Additional Routing Logic We can improve the efficiency of CN by

exploiting additional information in the database state maintained for each subscription. The
key observation regarding range-min subscriptions is the following (recall the notation from the
beginning of Section 4.2):

(Subsumption property) If an aggregate attribute update ∆(t : x, yo → yn) does not
affect a range-min subscription with range [x1, x2] 3 x, then the update cannot affect
any range-min subscription with range [x′

1, x
′
2] ⊇ [x1, x2].

This observation allows us to cut off forwarding of update messages early: As soon as we hit
an unaffected subscription corresponding to point (x1, x2) in the CAN space, we can exclude
the upper-left quadrant rooted at (x1, x2) from further forwarding. It is easy to verify the cor-
rectness of this observation. The minimum value of the aggregate attribute in the larger range
[x′

1, x
′
2] is the minimum among the following three quantities: (1) the minimum in [x ′

1, x1),
(2) the minimum in [x1, x2], and (3) the minimum in (x2, x

′
2]. Quantities (1) and (2) cannot

change because the update falls in [x1, x2]. Thus, if the minimum in [x1, x2] is not affected, the
minimum in the larger range cannot be affected either.
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We can stop forwarding even more effectively with the following observation, which is
stronger and slightly more subtle:

(Cutoff property) Suppose that update ∆(t : x, yo → yn) does not affect a range-min
subscription with range [x1, x2] 3 x because of another tuple t′ with range attribute
value x′ ∈ [x1, x2] and aggregate attribute y′ ≤ min(yo, yn). Then the update cannot
affect any range-min subscription with range
[x′

1, x
′
2] ⊇ [min(x, x′),max(x, x′)].

For intuition, consider the example in Figure 1. Update of t4 does not affect subscription s2

because of stock t2. The presence of t2 “protects” any range-min subscription whose range
includes both t4 and t2 (e.g., s1) from being affected by the update of t4. This property allows us
to cut off forwarding of update messages early, instead of forwarding them all the way towards
the upper-left corner of the CAN space as is done in CN.

We are now ready to present the CN
+ approach using our running example. For each range-

min subscription, CN
+ maintains a stock tuple with the minimum PER in subscription’s RISK

range. PER updates (assuming for now that they are ignorable or decreasing) are handled as
follows. As in Meghdoot, a PER update to stock with RISK x is first routed to point (x, x) in
the 2-d CAN space. The zone owner of this point tags the message with a cutoff point (c1, c2),
initially set to (−∞,∞). This message is routed upward and leftward to the zone owners
in the upper-left quadrant rooted at (x, x), just as in Meghdoot, but with several differences.
First, the message is not forwarded outside the rectangle spanned by (x, x) and the cutoff point.
A zone owner does not need to process subscriptions outside the same rectangle because they
cannot be affected. For each subscription inside the rectangle, we check its currently maintained
minimum PER to see if it is affected. If yes, it is updated. Otherwise, we refine the cutoff point
in the message based on the RISK value x′ of the stock with the minimum PER: If x′ < x, we
raise c1 to x′; if x′ > x, we lower c2 to x′. The cutoff property discussed earlier is the basis for
this refinement.

It is possible for CN
+ to handle non-ignorable increasing PER updates with reasonable ef-

ficiency, but the details are very messy and we omit them here. On a high level, we distribute
the entire database state along the diagonal of the 2-d CAN space, which supports computation
of any new minima exposed by bad updates. We have also developed optimizations for sharing
this computation among multiple affected subscriptions.

CN
+ has a big performance advantage over CN. An ignorable update is detected and stopped

very early, as it will not be forwarded beyond the subscription with the smallest range containing
it. CN

+ also attempts to cut off forwarding of non-ignorable updates as early as possible. The
disadvantage of CN

+ is its complexity. CN
+ pushes a significant amount of application-specific

routing logic into the content-based network layer, and the specialized routing algorithms re-
quire access to additional state including the contents of subscriptions and the database. The
resulting system is difficult to implement and maintain because of the lack of a clean interface
separating the network from the database.
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4.2.4 Hybrid Approaches

Our goal in this section is to develop techniques that offer the same or higher level of efficiency
as CN

+, but without complicating the network substrate with application-specific routing al-
gorithms. To achieve this goal, we need to rethink the traditional responsibilities of servers
in a publish/subscribe system, and divide the work carefully between servers and the network.
We seek to maximally exploit the capability of a content-based network within the confines
of its standard interface. Recall that a content-based network supports subscriptions defined
as predicates over the content of each message. In this section, we show that with our mes-
sage/subscription reformulation techniques, we can support stateful range-min subscriptions
efficiently using stateless subscriptions of the form “the data rectangle in the message contains
the point of interest.” Such subscriptions are a standard feature in most content-based networks,
e.g., [10]; in particular, we show that Meghdoot can handle these subscriptions very efficiently
with minimal extension. While this section focuses on range-min subscriptions, we note that
message/subscription reformulation is a general mechanism; reformulation techniques for other
types of subscriptions will be discussed in Section 4.3.

S-CN: Server with Content-Based Network Under this approach, which we term S-

CN, a central server maintains the database state and is responsible for generating notification
messages and injecting them into a content-based network for dissemination. Interestingly, the
server does not need to know the set of subscriptions, which makes S-CN particularly attractive
when subscriber anonymity is desired, or when it is expensive for a server to maintain a large,
dynamic set of subscribers.

Message/Subscription Reformulation The key idea is for the server to reformulate each
publish message into zero or more notification messages whose contents carry additional infor-
mation derived from the current database state. This additional information effectively removes
the dependency of stateful subscriptions on the database state. When stateful subscriptions
register with the content-based network, they are first reformulated into stateless subscriptions
(without any knowledge of the database state) to work with the reformulated notification mes-
sage format.

To illustrate the general reformulation mechanism, let us consider a very naive reformulation
technique as a warm-up exercise. The server can simply embed the entire database state into
each notification message. Doing so obviously makes all stateful subscriptions stateless, but it
incurs too much overhead, and may exceed the capability of most content-based networks as
they may not support full SQL queries over the message content. How to do better than this
naive technique requires non-trivial understanding of different subscription types.

Mar-Based Reformulation It turns out that for range-min subscriptions, there exists an
efficient and effective reformulation based on Mar (for Maximum Affected Range), which intu-
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itively captures an update’s “extent of influence” on range-min subscriptions. Informally, using
our running example, the Mar of a stock t is the maximum RISK range in which t has the min-
imum PER and is the only stock with this PER. We formally define Mar below, where a point
(x, y) represents a tuple with range attribute value x and aggregate attribute value y:

Definition 1 (Maximum affected range) Mar(x0, y0), the Mar of point (x0, y0) with respected
to a set of distinct points P , is the maximum range (xl, xr) 3 x0 for which there exists no point
(x, y) ∈ P such that xl < x < xr and y ≤ y0. Let Mar(x0, y0) = ∅ if no such range exists;
i.e., ∃(x0, y) ∈ P : y ≤ y0.

The Mar of an update δ = ∆(t : x, yo → yn), denoted Mar(δ), is the union of Mar(x, yo)

and Mar(x, yn), both of which are defined with respect to the set of points representing all tuples
in the relation other than t.

For example, Figure 14 shows Mar(x0, y0) with respect to a set of points (shown as solid black
dots). Basically, Mar(x0, y0) is an open interval between two points: the first one to the left of
x0 and the first one to right of x0, both with height less than or equal to y0. As another example,
in Figure 1, the Mar of the t5 update is the range (20, 100). We show in [15] how to compute
Mar efficiently (in time logarithmic in the size of the database). The following results establish
the utility of Mar in range-min subscription processing:

Theorem 1 A range-min subscription with range [x1, x2] is affected by an update δ if and only
if x ∈ [x1, x2] ⊆ Mar(δ).

Corollary 1 (Update classification) Consider an update ∆(t : x, yo → yn). (1) If Mar(t) =

∅, the update is ignorable. (2) If Mar(t) 6= ∅, and Mar(x, yo) ⊆ Mar(x, yn) (with respect
to the set of points representing all tuples other than t), then the update is good, and the new
minimum for any affected range-min subscription is yn. (3) Otherwise, the update is bad.

Corollary 1 provides the tests for the server in S-CN to run in order to classify each incoming
database update. Furthermore, this corollary leads immediately to the following reformulation
techniques:

• (Message format) Each database update is reformulated into zero or more notification
messages of the form

〈NEW MIN, INNER L, INNER R, OUTER L, OUTER R〉

and injected into the network.

• (Subscriptions) Each range-min subscription over range [x1, x2] is reformulated into a
predicate

(OUTER L < x1 ≤ INNER L) ∧ (INNER R ≤ x2 < OUTER R)

over the notification message. Upon receiving a message matching the reformulated pred-
icate, a subscriber simply updates the minimum to NEW MIN.
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Figure 14: Mar and Hull.

• (Ignorable updates) They are simply discarded by the server.

• (Good updates) Each good update ∆(t : x, yo → yn) is reformulated as 〈yn, x, x, x1, x2〉,
where (x1, x2) = Mar(x, yn), computed with respect to the set of points representing all
tuples other than t. For example, the good update ∆(t4 : 40, 12 → 4) in Figure 1 is
reformulated as 〈4, 40, 40, 20, 100〉.

Reformulating Bad Updates As we have seen in the example from Section 2.1, a bad
update (such as the rise of t5’s PER in Figure 1) is tough to handle because it “exposes” different
new minima for different subscriptions. Interestingly, with the help of Mar and the concept of
upper hull introduced below, we can capture all effects of a bad update on affected subscriptions
succinctly and precisely, and in a way that allows the server in S-CN to encode them in the same
format as the reformulated notification messages for good updates.

Definition 2 (Upper hull) Consider point (x0, y0) and a set P of points. Suppose [xl, xr] =

Mar(x0, y0) 6= ∅. Hull(x0, y0), the upper hull of point (x0, y0) with respect to P , is the set of
points consisting of the following:

• The peak, denoted Peak(x0, y0), is the point (x0, y) ∈ P where y is the smallest possible.
Let the peak be (x0,∞) if no such point exists, i.e., P has no point with X-coordinate of
x0.

• The left upper hull, denoted LHull(x0, y0), is the set of all points (x′, y′) ∈ P where xl <

x′ < x0, and there exists no other point (x, y) ∈ P such that (x′ ≤ x < x0) ∧ (y ≤ y′).

• The right upper hull, denoted RHull(x0, y0), is the set of all points (x′, y′) ∈ P where
x0 < x′ < xr, and there exists no other point (x, y) ∈ P such that (x0 < x ≤ x′)∧ (y ≤

y′).
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For example, Figure 14 circles the points in Hull(x0, y0). Basically, Hull(x0, y0) consists of
the two “skylines” [39] that we observe by looking towards left and right from (x0, y0). As
it turns out, each point (x′, y′) ∈ Hull(x0, y0) corresponds to a new minimum that would be
exposed by the removal of (x0, y0). Intuitively, using Mar(x0, y0), we can capture the set of
subscriptions that will have y′ as their new minimum. This observation is formalized by the
following theorem:

Theorem 2 Consider a bad update ∆(t : x, yo → yn). Let P be the set of points representing
the set of tuples after the update has been applied. A range-min subscription with range [x1, x2]

is affected by the update if and only if there exists a point (x′, y′) ∈ Hull(x, yo) (with respect
to P ) such that [min(x, x′),max(x, x′)] ⊆ [x1, x2] ⊆ EMar(x′, y′), where EMar(x′, y′) is the
Exposed Maximum Affected Range of (x′, y′) with respect to P − {(x′, y′)}. Furthermore, the
new minimum for this affected subscription is y ′.

Note that we have used EMar instead of Mar in the above theorem. The two concept are identi-
cal except the special case where two points in P have the same Y -coordinate. The difference
between EMar and Mar is rather minor and does not affect the exposition in this section. Theo-
rem 2 provides the basis for the following technique for reformulating bad updates:

• (Bad updates) Given a bad update ∆(t : x, yo → yn), for each point (x′, y′) ∈ Hull(x, yo),
the server generates a notification message 〈y ′,min(x, x′),max(x, x′), x1, x2〉, where
(x1, x2) = EMar(x′, y′) (see Theorem 2 for what point sets Hull and EMar are computed
with respect to).

Both the notification message format and the behavior of reformulated subscriptions are con-
sistent with those for good updates. The only difference is that the server generates more than
one notification message per bad update. As an example, the bad update ∆(t5 : 50, 5 → 9) in
Figure 1 is reformulated as 3 notification messages: 〈9, 50, 50, 30, 70〉, 〈8, 30, 50, 20, 70〉, and
〈6, 50, 70, 20, 100〉.

Disseminating Reformulated Messages Recall that S-CN reformulate a range-min sub-
scription over range [x1, x2] into the following predicate over reformulated notification mes-
sages:

(OUTER L < x1 ≤ INNER L) ∧ (INNER R ≤ x2 < OUTER R).
We now illustrate how S-CN can disseminate messages to such subscriptions efficiently using
Meghdoot with minimal extension. As in Section 4.2.3, we can picture each subscription as
a point (x1, x2) in a 2-d CAN space. Each reformulated notification message can be seen as
specifying two opposing corners (INNER L, INNER R) and (OUTER L, OUTER R) of a rectangle
in this space (as shown in Figure 15). This message matches precisely those subscriptions that
fall within the rectangle. Meghdoot already knows how to disseminate a message from a point
along the diagonal of the CAN space to its upper-left quadrant. To support dissemination to
a rectangular region, we simply need to (1) start the Meghdoot forwarding algorithm from the
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Figure 15: S-CN routing.

lower-right corner (INNER L, INNER R), and (2) stop forwarding once the message goes be-
yond either OUTER L or OUTER R. Note that this extension to Meghdoot is needed only because
Meghdoot is a very specialized content-based network designed to support only range subscrip-
tions. Many content-based networks (e.g., [10]) allow subscriptions to be general predicates
over message content, and therefore should work with S-CN without additional extension.

It is interesting to visualize the messages reformulated from good and bad updates as rect-
angles in the CAN space. A good update is reformulated into a single rectangle, with its lower-
right corner corresponding to an 0-length range containing just the update position, and its
upper-left corner corresponding to the Mar of the update. A bad update is reformulated into a
collection of non-overlapping rectangles, whose union is a big rectangle spanning the position
and Mar of the update (Figure 15).

As noted at the beginning of Section 4.2, we detect ignorable updates without the knowledge
of the active subscriptions in the system. Thus, some non-ignorable updates may turn out to be
effectively ignorable because certain ranges may not be covered by subscriptions. As a simple
optimization, the server in S-CN can maintain the ranges of active subscriptions in the system,
and perform a check before injecting a notification message into the network. Doing so would
incur extra maintenance overhead; on the other hand, S-CN can still provide some protection of
subscriber anonymity, because the server only needs to know the subscription definitions, but
not who or where the subscribers are.

DS-CN: Distributing the Server in S-CN We can replace the central server in S-CN

with multiple servers that together maintain the database in a distributed manner, resulting in
an approach we call DS-CN. The idea is to leverage the network substrate not only for dissem-
inating notifications, but also for distributing the database state. Consider again our running
example. Using CAN/Meghdoot as the network substrate, DS-CN maps a stock with RISK x
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to a point (x, x) on the diagonal of the CAN space. This stock would be maintained by the
zone owner responsible for the corresponding point in the CAN space. In addition, each zone
owner along the diagonal maintains pointers to its two immediate neighboring zone owners (left
and right) along the diagonal. When a PER update δ = ∆(t : x, yo → yn) enters the system,
DS-CN routes it to the zone owner responsible for (x, x). The zone owner then initiates two
linear, distributed traversals starting from x: One traversal follows the left zone-owner point-
ers, scanning stocks in decreasing order of RISK until one (other than t) with PER no greater
than min(yo, yn) is reached; the other traversal follows the right zone-owner pointers, scanning
stocks in increasing order of RISK using the same stopping condition. When both traversals
stop, DS-CN will have examined all stocks in Mar(δ), which provide enough information to
reformulate the update (detailed omitted). The rest proceeds in the exact same way as S-CN.

The advantage of DS-CN over S-CN is that there is no bottleneck of a central server. Pub-
lish messages no longer need to rendezvous at the same server, and reformulated notification
messages are now sent out from different servers. Furthermore, Meghdoot’s zone-splitting al-
gorithm [25] can be easily adapted to split diagonal zones that hold too many database state,
thereby proving effective load balancing. Note that the two uses of the network substrate by
DS-CN—for disseminating notifications and for distributing database state—are completely or-
thogonal and do not need to interfere with each other; in fact, we can use different overlay
networks for the two purposes.

4.3 Other Subscription Types
In this section, we briefly discuss how to handle other subscriptions with a hybrid approach
such as S-CN, using our general message/subscription reformulation mechanism.

Range-max subscriptions can be handled by the same techniques as range-min. Range-
count/sum/average subscriptions are easier to handle: We simply reformulate them into range
subscriptions without aggregation; publish messages do not need to be reformulated (though
obviously irrelevant updates can be ignored, e.g., those updating neither range nor aggregation
attributes). Unlike range-min/max, relaxing these range-aggregation subscriptions would not
result in excessive traffic, because relevant updates that fall within a subscription range generally
do affect the subscription.

A range-DISTINCT subscription tracks the set of distinct values of an attribute Y for tuples
whose range attribute X fall within some range. Simply relaxing this subscription into a range
subscription may generate a lot of unnecessary traffic if there are many duplicates. In this case,
we can extend the concept of Mar as follows: Mar of an insertion (or deletion) is the maximum
X range that contains the insertion (or deletion) point and no other tuples with the same Y

value. An insertion (or deletion) is reformulated into a message containing X and Y values
and the Mar, if it is not empty. A range-DISTINCT subscription is reformulated into a stateless
selection subscription that checks if the subscription range contains the X value and is also
contained by the Mar.
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We have also extended techniques for 1-d range-aggregation and range-DISTINCT subscrip-
tions to multiple dimensions, where each subscription can specify orthogonal range conditions
for multiple attributes. In higher dimensions, Mar is the union of a collection of hypercubes
cornered at the update point. Both Mar and Hull become complex shapes in higher dimensions,
and reformulated messages no longer have constant size even for good updates (see [14] for de-
tails). One way of coping with this complexity is to relax Mar into a simpler bounding region,
and use subscriber state to filter false positives.

Finally, select-join subscriptions are stateful as well. Given a publish message that applies
an update δR to table R, its effect on subscription σp(σpR

R ./ σpS
S) is σp(σpR

{δR} ./ σpS
S),

which requires accessing state (content of table S) not in the original update message. Following
the message/subscription reformulation approach, a server maintaining the database state can
reformulate each δR into a series of notification messages, each containing a result tuple in
{δR} ./ S. Meanwhile, the select-join subscription σp(σpR

R ./ σpS
S) is reformulated into a

stateless subscription that checks condition p ∧ pR ∧ pS over reformulated messages.
In a publish/subscribe system that uses a single network substrate to support more than one

types of subscriptions, we use an additional TYPE field in reformulated messages to distinguish
those intended for different types of subscriptions. A reformulated subscription would also
include an extra condition that selects notification messages with the appropriate TYPE value.

4.4 Evaluation
4.4.1 Implementation Details

The server module supports well-defined network interfaces to a regular network for unicast and
multicast, and CAN for S-CN. On the network side, we have implemented a network simulator
for a large-scale publish/subscribe system. The first phase of network simulation generates
application-level routing details that are used by a second phase which can accept any topology
generated using INET [17], an Internet-like network topology generator. This phase performs
a link-level simulation (timing is not simulated) of the network topology. We support a number
of dissemination styles, as discussed next.

Unicast from a centralized server. First, the server determines the set of subscribers af-
fected by an update. The network simulator sends a single hop unicast message to each sub-
scriber, carrying the new answer to that subscription. The route follows the shortest path over
the underlying IP substrate from the server to the destination.

Multicast from a centralized server. For each exposed answer, the server determines the
set of destinations that need to receive a multicast message with that answer.

A message containing this new answer tuple has to be multicast to the set of destinations.
The network simulator uses this application-level data to perform multicast as described next.
Given a set of N possible destinations, it would take 2N groups to be able to directly multicast
to any subset of recipients. We use application-level multicast in our simulator, as IP multicast
is not widely supported and has severe limitations in terms of number of groups. We implement
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an efficient hierarchical multicast approach that limits the number of groups that any single
node needs to be aware of.

The hierarchical multicast that we have designed and implemented is inspired by NICE [7]
and works as follows. Consider a network with N nodes. In addition to its IP address, each
node can be identified by its position within the network, described as a set of coordinates in
a geometric space such as the one proposed by Global Network Positioning (GNP) [34]. GNP
assigns coordinates to nodes such that their geometric distances in the GNP space approximate
their actual network distances. We then use a geographic clustering algorithm such as k-means
to form a tree of nodes as follows. We define a limit c on the number of children at any node in
the tree. Clustering is performed on a set of n nodes to give min(c, n/c) sub-clusters of nodes.
Each sub-cluster has a leader, and the leader of the original cluster is the parent of these sub-
cluster leaders in the tree. The tree is rooted at the server which acts as the leader of the highest
level cluster consisting of all nodes in the network. Each cluster C with leader LC is further
clustered in the same manner and LC is the parent of the leaders of each of these sub-clusters.
Clustering is no longer performed on a cluster if it has no more than c nodes. This gives a tree
rooted at the server, with each non-leaf node having at most c children, and the tree has a total
of N leaves. Each leader L with k children forms a multicast group for each of the 2k possible
subsets of the k children. It maintains a routing table that provides, for each multicast group,
the application-level multicast tree that is constructed rooted at L and reaching all the members
of that multicast group. The application-level multicast tree can be constructed in a number of
ways - we use a greedy offline algorithm to construct a bottleneck bandwidth tree; this was used
in Bullet [29] as a good offline technique to compare with dynamic application-level multicast
techniques. Note that the number of group IDs at any node is bounded by 2c and hence, by
limiting c we can ensure that no node needs to be aware of a large number of multicast groups.

When a node L receives a message along with a set S of recipient nodes for that message, it
can compute the subset of its children that need to receive the message. All it needs to compute
this is a bitmap of all the nodes, formed by a left-to-right ordering of the nodes in the tree under
node L. At every level, the nodes in each sub-cluster form a contiguous chunk in the bitmap.
By looking at the bit positions that need to be reached in its chunk of the bitmap, a node can
determine the subset of its children to which the message needs to be forwarded. It can then
look up the multicast group ID for that subset and forward the message along the application-
level multicast tree described earlier. This process is repeated until the message reaches all its
intended recipients. Note that the message reaching a node N needs to encode the exact set
of destination subscribers located below N as this is needed to determine the set of affected
children at that node.

CAN routing with range predicates, with Mar, and with additional state (no server).
We use the Meghdoot simulator [25] in order to evaluate the basic CNapproach with just range
predicates (described in Section 4.2.3), without specialized techniques to handle more com-
plicated queries. The simulator is augmented with our link-level simulator for more accurate
routing statistics. In order to support the sophisticated techniques used in S-CN (such as Mar)
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and DS-CN (such as diagonal two-way routing), we implemented appropriate extensions to the
simulator.

4.4.2 Evaluation Metrics

We use both server- and network-side metrics for evaluation. On the server-side, we track
processing time, which is measured as the period between the time at which an update arrives
at the server and the time at which the server completes generation of all outgoing messages for
dissemination. On the network-side, we track, for each event: (1) Number of overlay message
hops: This is the total number of messages sent between overlay nodes, in order to process and
disseminate that event. (2) Number of IP message hops: This the number of hops over IP-level
links, during dissemination of an event. An overlay hop may traverse a number of IP-level links
on its path. (3) Network traffic: We define network traffic as the total number of bytes that need
to be transferred between overlay nodes during dissemination. (4) Maximum node stress (MNS):
We define node stress as the number of overlay messages originating from a node. MNS for an
event is the highest node stress among all nodes while processing that event.

4.4.3 Workload

We use normal distributions to derive 1-d range-min subscriptions. To model a hot range
which interests more subscribers, the position of the subscription interval is normally distributed
around center of domain of local selection attribute. The interval length also follows a normal
distribution. This subscription workload is used in association with both synthetic and real
update workloads.

Our synthetic update workload consists initially of a database that contains between 10, 000

and 100, 000 tuples uniformly distributed in the domain. We generate 200, 000 events (long
enough to reach stable measurements), each being an update of the aggregate attribute PER,
and collect the measurements of each update. All experimental parameters are summarized in
Table 1. We vary one or more of these parameters to perform experiments with varying database
size, number of subscriptions, percentage of ignorable updates, and the average number of
subscriptions affected.

We update a tuple by increasing or decreasing its output attribute using a random walk
model. The step depends on the current value and updates are independent of each other. Each
random variable (tuple) in this model is actually an irreducible, finite, and aperiodic Markov
chain; hence there exists a stationary distribution for the value of each tuple. Consequently,
update statistics such as the number of subscriptions affected by an update will be stationary
over time. Our simulation is long enough to ensure convergence. Detailed proof of convergence
of our update model is omitted for brevity. To make the workload more realistic, we also
introduce a small percentage of spikes. A spike is an update where the PER drops suddenly
(affecting a large number of subscriptions) and then bounces back to its old value. We also
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parameter value
number of overlay nodes 1000
number of physical nodes 20, 000

domain of range select attribute [0, 10, 000]
domain of aggregate attribute [0, 10, 000]

number of subscriptions 100k − 1M
midpoint of selection range N (5000, 1500)

length of selection range N (1000, 1000)
number of tuples in initial DB 10k − 100k
number of simulation events 200, 000
percentage of spiked events 0.5%

Table 1: Summary of all parameters used in experiments.

use a real update workload based on stock data from Yahoo! Finance [22]. More details are
provided in Section 4.4.5.

4.4.4 Experimental setup

We perform detailed link-level simulation of a 20, 000-node INET topology. Of these, 1000

nodes are chosen as the end nodes participating in an overlay network. Events are generated by
publishers assumed to be randomly scattered throughout the network.

We assume that publishers are distributed throughout the network. We do not model the
message hop from the publisher to the server/event point, because this cost would be incurred
in all systems. If the publisher is not a part of the CAN, it could contact some peer as an entry
point into the CAN. Similarly, subscriptions could be distributed throughout the network, but
each subscription chooses a peer in the overlay network as its gateway to the CAN. We use
the following technique to choose a gateway in our experiments. In CAN-based techniques,
the zone owner is chosen as the gateway for all subscriptions that map to that zone. The same
mapping is used in all the compared approaches. We assume that subscriptions reside at the
gateway and do not model the propagation of messages from the gateway to the end subscriber.
In case of multicast, the network-side metrics for each group ID at each node in the hierarchy
are precomputed to speed up the simulation. In addition, c is fixed at 10 so that no more than
1024 multicast trees need to be stored at any node in the system.

4.4.5 Experiments and results

Demonstration of scalability In this set of experiments, we compare the techniques in
terms of their ability to scale to large numbers of tuples and subscriptions. On the server side,
we compare the average processing time per update for S-CN, unicast and multicast (recall that
CN and DS-CN do not have a central server). On the network side, we compare the average
network traffic (bytes) generated per event. All updates are non-ignorable and the percentage
of spikes is 0.5%.
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db size 20K 40K 60K 80K 100K
S-CN 2.10 2.15 2.18 2.20 2.22

Unicast 726 671 678 655 654

Table 2: Number of outgoing messages
from server, varying database size

# subs. 200K 400K 600K 800K 1M
S-CN 2.08 2.08 2.08 2.08 2.08

Unicast 303 616 909 1218 1441

Table 3: Number of outgoing messages
from server, varying num. of subscriptions
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Figure 17: Avg. network traffic; increasing
database size.

We first vary the database size from 10, 000 to 100, 000 tuples, for 500, 000 subscriptions.
Figures 16 and 17 show the server- and network-side costs respectively. On the network side,
CN, S-CN, and DS-CN perform much better than unicast and multicast, and the average network
traffic is independent of database size. Note that we have shown network traffic in log scale
on the y-axis because of the order of magnitude difference between the various approaches.
Among these three approaches, DS-CN performs the best in terms of traffic as the diagonal
traversal usually takes very few hops. S-CN is next, the main factor for performing worse than
DS-CN is the cost of routing from the server to the event point. This is followed by CN. Among
central server approaches, S-CN achieves the lowest processing time, and its processing time
increases only by 20% when the database size increases by a factor of 10. The processing time
of multicast is roughly 50-70% higher than S-CN due to the cost of identifying all affected
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Figure 20: Performance of various approaches, varying the percentage of ignorable updates.

subscriptions. The trend for multicast is flat because the slight increase in processing time over
increasing database size is compensated by a decreasing number of affected subscriptions: a
larger database gives a subscription more resistance against update. However, the network-
side performance of multicast is the worst because the set of affected subscriptions needs to
be encoded in each message, even though the number of multicast messages may be small.
Unicast performs badly on both server- and network-side due to the high cost of assembling
and disseminating outgoing messages for each affected subscription. The processing time of
unicast also benefits from a larger database.

Next, we keep the database size at 10, 000 tuples and vary the number of subscriptions
from 100, 000 to 1 million. Figures 18 and 19 show scalability on the server and network side
respectively. S-CN is completely independent of subscriptions; thus, both its processing time
and network traffic is approximately constant. The three approaches of CN, S-CN, and DS-

CN perform well with traffic never rising above 1kB. All these approaches are independent
of the number of subscriptions, which makes them scalable. The processing time of multicast
increases over number of subscriptions. Unicast also increases but it performs much worse
due to the overhead of memory allocation for constructing objects corresponding to outgoing
messages (there are many outgoing messages for unicast). Even if we can optimize it using
bulk memory allocation, it cannot beat multicast, which is worse than S-CN. On the network
side, multicast is good in terms of number of overlay hops (not shown) but it performs badly in
terms of total traffic generated. Tables 2 and 3 compare the number of outgoing messages (from
server) of S-CN and unicast for the two sets of experiments. In all cases, S-CN saves more than
99% of outgoing messages. We also evaluated CN

+ for the portion of workload with decreasing
updates. We found that early stopping is effective and results in traffic reduction of more than
98% compared to CN. Early stopping in CN

+ (for decreasing updates) was around 2% less
effective in terms of traffic than the Mar-based stop conditions in S-CN. However, handling
increasing updates in CN

+ is complex (as discussed earlier) and would cause more traffic. We
do not advocate CN

+ because it pushes a significant amount of complex application-specific
routing logic into the network layer.

Varying percentage of ignorable updates We next demonstrate the effect of increasing
the percentage of ignorable updates I . To better control the parameter, we use a subscrip-
tion distribution where the midpoint of the selection range is taken from a normal distribution
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load.

N (5000, 10000) and the length is taken from a normal distribution N (50, 10). There are no
spikes introduced. Figure 20 shows results for three network metrics. The left figure shows the
average number of overlay hops per event, while the middle figure shows the average network
traffic (in bytes) per event, for all approaches. The serverless CN approach is independent of
I because we cannot truncate ignorable updates. As I is increased, the performance of all the
approaches except CN improves and, for high values of I , CN becomes the worst approach.
For high values of I , serverless approaches are less desirable as they are unable to detect and
truncate ignorable events. However, DS-CN still performs well because in most cases where
an update is ignorable, it can be detected at the zone owner containing the event point itself.
Overall, the best performance is achieved by DS-CN. Multicast performs quite well in terms of
number of overlay messages, with S-CN following up in third position. However, as the middle
figure shows, multicast is the worst in terms of total network traffic (due to message size). The
right figure shows the average number of IP-level hops per event, for each of the various ap-
proaches. The trends are similar to those of overlay hops. In further experiments, we show only
the average network traffic (in bytes) for various approaches; the other metrics were found to
follow similar trends as described here, in all our experiments. In summary, the single server-
based S-CN and the distributed DS-CN perform the best as the messages encode the affected
subscriptions very compactly and messages are sent only to those CAN regions which could be
affected by the event.

Varying number of affected subscriptions We increase the average number of subscrip-
tions affected by a non-ignorable update by controlling the percentage of spikes which affect a
large number of subscriptions. All updates are non-ignorable. The number of subscriptions is
500, 000 and the database size is 50, 000 tuples. Figure 21 shows the performance of each of
the approaches in terms of average network traffic (in bytes). From the figure, we see that uni-
cast and multicast worsen in performance linearly with increase in average number of affected
subscriptions. CN is independent of this parameter and hence shows a flat line. The network
traffic generated by S-CN increases very slightly across the workloads as seen from the figure.
This is due to larger average Mar as a result of increasing percentage of spikes. Finally, DS-

CN shows an increasing trend; the reason is that since spikes have a large Mar, the diagonal
traversal generates more traffic. In real workloads, such updates with large Mar are extremely
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Approach Max. node stress
Unicast 10, 282

Multicast 3
S-CN 23

DS-CN 25
CN 8

Table 4: Maximum node stress
rare.

Maximum node stress for various approaches We compared the maximum node stress
(MNS) for a workload with 21% ignorable updates, 500, 000 subscriptions, and 10, 000 database
tuples. There were no spiked events. The highest MNS (across events) for unicast was found
to be extremely high (10, 282) at the server. From the CDF of MNS over events (not shown),
we found that although more than half the events generate no message, a fair percentage of
events generate very high node stress at the server. This demonstrates the main disadvantage of
unicast: lack of scalability for large-scale subscriptions. The highest MNS of S-CN and DS-CN

were found to be just 23 and 25 respectively. In S-CN, 21% of events had 0 MNS, while in
DS-CN, nearly 87% of events had 0 MNS. In both approaches, over 99% of events had a MNS
less than 10. Multicast had a highest MNS of just 3 because the multicast trees are extremely
skinny. Finally, CN had a highest MNS of 8. Although nearly every event has a non-zero MNS
in CN, most events have a small MNS, for example, over 94% of events have a MNS of no more
than 3.

Distribution of network traffic We plot the CDF (over events) of network traffic for all
approaches, in Figure 22. There are 500, 000 subscriptions and 10, 000 database tuples. The
percentage of ignorable updates is 21%. From the CDF, we see that S-CN, CN, and DS-CN

perform well with average network traffic generated by an event less than 1kB for nearly all
events. DS-CN is seen to be the most efficient as nearly 87% of events do not generate any
traffic. S-CN also performs well but only the ignorable updates generate no traffic (other events
need to be routed to the event point). However, nearly 97% of events generate traffic of less than
1kB. The performance of CN is worse. Around 94% of events generate less than 1kB traffic,
but more than half the events generate 320 bytes or more traffic. Unicast and multicast perform
poorly overall as expected. However, these approaches perform well for events that affect few
or no subscriptions: as a result, more than 77% of messages cause network traffic of fewer than
100 bytes. But, the performance degrades rather rapidly for the rest of the events, making these
approaches very bad overall. Traffic of upto 680kB is seen for some events that affect a large
number of subscriptions.
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Experiments on a real workload In order to evaluate our techniques on a real trace, we
obtained information for 3053 stocks from Yahoo! Finance [22]. We gathered data for earnings
per stock (EPS) for each of the stocks. In addition, computed the average recommendation over
the past month (RECO) for each stock. RECO varies from 1.0 (strong buy) to 5.0 (strong sell).
We collected open and close price data over the course of 60 days, and used EPS to compute
PERfor each price. We thus obtained a trace of events, each being an update of PER with RECO

constant. The trace had 338, 415 events. 11.7% of the events were non-ignorable events. Note
that although this trace has only two events per day, real-time stock prices over the course of
the day would follow a similar update trend, with several thousand updates generated every few
seconds. This would need efficient database/network coordination to scale to large subscription
sets.

We generated 500, 000 subscriptions; each subscription requests the minimum PER over a
specified RECO range. This is a meaningful query because stocks with lower PER are intuitively
better. Moreover, people may desire stocks rated at different ranges of RECO.

Figure 23 shows the average network traffic per event as we increase the number of sub-
scriptions. We see that S-CN and DS-CN generate orders of magnitude lesser traffic than CN,
unicast, and multicast. Both unicast and multicast do not scale well; their performances degrade
linearly with increase in number of subscriptions. CN shows constant but bad performance. S-

CN and DS-CN perform very well and are both independent of number of subscriptions. They
generate less than 100 bytes of network traffic per event on the average, with maximum node
stress never rising above 10.

4.5 Conclusions
We approach the construction of large-scale publish/subscribe systems by viewing the problem
from the perspective of the interface between the database and the network. Different techniques
vary in the degree of database/network cooperation; some are more suitable than others for
certain types of queries and/or workloads. The tradeoffs are illustrated by the following table,
which compares techniques based on how they handle stateful subscriptions.

Tech- Network side Server side Implemen-
nique Traffic MNS State (subs) Processing State tation cost
S-UN Very high High None Medium High Low
S-MN Very high Low None Medium High Low
CN High Low High None None Medium

CN
+ Medium Low Medium None None High

S-CN Low Low Low Low Low Medium
DS-CN Low Low Low None None Medium

It is clear that each technique has its strengths and weaknesses. For example, although uni-
cast does not require state at subscriptions, the update traffic is very high. CN

+ introduces
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application- specific logic into the network and needs per-subscription state. S-CN and DS-CN

perform well overall, with dramatic reduction in traffic at low server-side processing cost. We
showed that simply converting a stateful subscription to a stateless one does not yield a scal-
able solution. Our message and subscription reformulation mechanisms are better because they
can efficiently embed state information into messages. It is possible for a normal content-based
network (which can handle only stateless subscriptions) to handle several classes of stateful sub-
scriptions efficiently: the key is to transform events into a semantic description of affected sub-
scriptions, and subscriptions into a predicate over the semantic description. We demonstrated
this using several query classes including range aggregation, distinct, and join. We experimen-
tally validated our techniques for range aggregation, and showed that it is possible to achieve
orders-of-magnitude improvement over a naive transformation of the stateful subscription to a
stateless one.

5 Rich Notification Conditions
5.1 Introduction
Subscribers in a publish/subscribe system specify what data they are interested in, using sub-
scription queries. However, oftentimes subscribers are interested in receiving notifications only
when certain conditions are triggered. Such conditions are referred to as notification conditions.
Notification conditions are per-subscription state that need to be processed intelligently in order
to allow the system to scale to large numbers of subscriptions. Our ongoing work strives to ad-
dress this problem from the perspective of the interface between the database and the network.

We first briefly describe our proposed notification semantics for publish/subscribe systems
in Section 5.2. Then, in Section 5.3, we describe a spectrum of techniques to handle value-based
notification conditions.

5.2 Notification Semantics
We augment the subscription language to allow specification of notification conditions, by in-
troducing a NOTIFY WHEN clause. The notification condition is expressed as part of this clause.

Notification conditions can be of various types. Value-based notification conditions are those
that request notification when the value of the true subscription result differs by some amount
from the result value that was last notified to the subscription. These can be expressed as
RESULT CHANGED BY δ where δ specifies the acceptable difference. For strict semantics, we
have to ensure that a subscription receives a notification condition with the current value if
and only if the current value differs from the last notified value by at least x. To make this
clear, assume that there exists a subscription S and that it was last notified with a result value
of x. This means that whenever there is an update U that changes the result to x ′ such that
x′ ≥ x + δ or x′ ≤ x− δ, subscription S needs to be updated with the new result x′. Any other
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update should not cause S to be notified. In Section 5.4, we will investigate how to relax these
semantics in a disciplined manner in order to achieve higher scalability.

Notification conditions can also be time-based. For example, a subscription may wish to be
notified of updates to its result every 30 seconds. We can express such notification conditions
as TIME CHANGED BY δ. Similar techniques apply to such subscriptions, but we do not cover
this class of notifications in this document.

5.3 Value-based Notification Techniques
We now discuss a series of techniques to support value-based per-subscription notification con-
ditions. We address the case where all subscriptions have the same filtering condition, but each
subscription could potentially have a different notification condition. Let there be N subscrip-
tions in the system, where the ith subscription is defined as Si = SELECT PRICE FROM STOCK

WHERE filter NOTIFY WHEN RESULT CHANGED BY δi. Note that each subscription i has the
same filter, whereas it could potentially have a different notification condition δi. We use the
term bound to refer to the notification condition. Let the maximum possible allowed bound be
δlimit. The last notified value for subscription i is denoted by Li. At the initial state, assume for
convenience that all subscriptions have the latest notification v0. Addition of new subscriptions
to the system is investigated along with each approach described below.

5.3.1 Unicast with naive server-based processing

The naive method of processing the subscriptions is to store all the subscriptions at the server,
along with Li and δi for each subscription i. When a new update comes in, we scan through the
list of subscriptions, and if the new update falls outside (Li − δi, Li + δi) for any subscription i,
it is added to the list of affected subscriptions, and its last notified value is updated. The server
then sends out the new update to all the affected subscriptions via unicast. This technique has a
time complexity of O(N).

We can improve the efficiency by introducing an index. Every subscription Si is indexed
into a B-tree twice, first with an index key of Li − δi and second with an index key of Li + δi.
Thus, we index the left and right edges of the value boundaries of every subscriptions. When
an update falls outside these boundaries, it needs to be notified. Assume that the last update is
v. When a new update v′ comes in, we look up v in the index, and traverse the leaves in the
direction of v′ until we reach v′. All the subscriptions we meet are the ones that are affected
and need to be updated with v′. This will cause their left and right boundaries to change, hence
they need to be deleted from the index (along with their other edge) and reinserted twice as
before. If M is the number of subscriptions affected by an update, the operation has a total time
complexity of O(M lg N) and this work needs to be performed after every update.
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5.3.2 Unicast with smart server-based processing with periodic reorganization

We can improve upon the naive processing technique by indexing subscriptions in a different
manner. For this purpose, we define two types of trees, clean trees (materialized and virtual)
and dirty trees.

We define a materialized clean tree Ti as a B-tree in which every indexed subscription has
the same last notified value, as of the time of creation. The term materialization refers to the fact
that this index structure is physically created by the system. For tree Ti we denote this value by
LNVi. We index a subscription i into the materialized clean tree using δi as the key.

In addition, we define one or more virtual clean trees (Ti,1, Ti,2, . . .) which can be regarded
as views over the materialized clean tree i.e. they are not physically created. At the time
when a new materialized clean tree Ti is created, it is associated with just one default view
Ti,1. A virtual clean tree Ti,j is associated with two attributes: (1) LNVi,j , which is the last
notified value for all subscriptions in that virtual clean tree. (2) δmin

i,j and δmax
i,j , which are

respectively the smallest and largest bounds of subscriptions indexed within that virtual tree.
If an update value falls within the interval [LNVi,j − δmin

i,j , LNVi,j + δmin
i,j ], it will not affect

any subscriptions indexed in that tree. δmin
i,j and δmax

i,j are maintained only for convenience, for
example in determining if a virtual tree is affected by an update, as we shall see later.

A virtual clean tree can be regarded as a tuple, whose attributes help perform three functions:
(1) On an incoming update, δmin

i,j helps identify whether the virtual clean tree is affected by
the update, i.e., whether the corresponding clean materialized tree needs to be looked up (one
materialized clean tree may need to be looked up more than once if several corresponding virtual
trees are affected by an update. (2) LNVi,j specifies how the tree needs to be looked up. The
same materialized virtual tree needs to be looked up differently depending on the attributed
of the affected virtual clean tree which initiated the lookup. (3) Once a virtual clean tree is
identified and affected subscriptions are looked up, δmax

i,j helps determine if the virtual clean
tree needs to be divided to create a new virtual clean tree. These functions are described in
greater detail below.

An an example, in the initial condition, we have one materialized clean tree T1 in the sys-
tem. Assuming that the latest notification is v and the smallest and largest subscription bound
widths currently in the system are respectively δmin and δmax, this materialized clean tree
has LNV1 = v. It is associated with only one virtual clean tree T1,1 whose attributes are:
LNV1,1 = v, δmin

1,1 = δmin, δmax
1,1 = δmax.

Handling incoming updates. When an update with value v ′ comes in, we follow a two-
phase process of determining the set of affected subscriptions. First, we determine the set of
affected virtual clean trees. To determine this, we use the condition that a virtual tree Ti,j

is affected only if the update falls outside the range [LNVi,j − δmin
i,j , LNVi,j + δmin

i,j ]. This
can be performed efficiently using another index, as discussed later. Second, if a virtual clean
tree is determined to be affected, we perform an index lookup for the value |v ′ − LNVi,j| on
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the corresponding materialized clean tree. Traversing the leaves of the materialized clean tree
towards the left until we reach δmin

i,j will give us the exact set of subscriptions affected by this
update and belonging to virtual tree Ti,j .

Once the affected subscriptions in a virtual clean tree are identified, we need to update the
data structures. Defining virtual clean trees has an advantage, because in the simpler approach
of maintaining just the materialized clean tree, we would have to divide the tree into two trees
by deleting all the affected subscriptions from the old materialized clean tree and inserting them
into a new materialized clean tree. However, in our case, all we need to do is to define a new
virtual clean tree and update the attributes of the affected virtual clean tree, which takes constant
time. We first determine if the affected virtual clean tree needs to be divided. A virtual clean tree
will need to be divided if |v′ − LNVi,j| < δmax

i,j . If the virtual clean tree needs to be divided,
we define a new virtual clean tree Ti,j′ with attributes LNVi,j′ = LNVi,j and δmax

i,j′ = δmax
i,j .

Further, δmin
i,j′ is set to the smallest subscription in Ti,j′ (this is simply the subscription to the

right of the first affected subscription encountered during the lookup of |v ′ − LNVi,j| which we
performed earlier). Finally, whether or not a new virtual tree needed to be defined, we update
the attribute LNVi,j of the existing virtual clean tree Ti,j to v′ and δmax

i,j to the bound width of
the first affected subscription we met during the traversal to determine affected subscriptions.

Coming back to the example of the initial condition with one virtual clean tree T1,1, assume
an update v′ comes in such that δmin

1,1 ≤ |v′ − v| < δmax
1,1 . We would define a new virtual clean

tree T1,2 with attribute LNV1,2 = v, δmax
1,2 = δmax

1,1 . δmin
1,2 is updated appropriately. We would

finally update the old virtual clean tree T1,1 with LNV1,1 = v′ (δmax
1,1 would also be updated

appropriately).

Indexing virtual clean trees. We can quickly determine the set of affected virtual clean
trees by indexing their attributes into a B-tree. We use a B-tree to index intervals as follows. A
virtual clean tree Ti,j is indexed twice with keys LNVi,j−δmin

i,j and LNVi,j+δmin
i,j respectively.

When an update v′ comes in (assuming the last update was v), we look up v in the B-tree and
traverse the leaf nodes in the direction of v ′ until we reach v′. This will allow us to encounter
exactly the set of affected virtual clean trees. An affected virtual clean tree will need to be
deleted and reindexed into this B-tree using its new attributes. Note that this index structure is
typically expected to be much smaller than the original B-tree containing all subscriptions.

Merging clean trees into a dirty tree. The basic problem with the scheme just outlined is
that after k updates, there could be (in the worst case), O(k2) virtual clean trees in the system.
An incoming message could potentially affect all of them, which means that O(k2) lookups of
the materialized clean tree may need to be done (although it can be shown that only O(k), of
the affected virtual clean trees, in the worst case, would actually require division). Hence, we
introduce a periodic merge operation, which takes as input the entire set of virtual clean trees,
and merges them to produce a single materialized B-tree, which is called a dirty tree.
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The distinguishing factor of a consolidated dirty tree is that it can contain subscriptions
with different last notified values. Hence, we cannot index the subscriptions simply by their δ

values. We index a subscription i into a dirty tree twice, with keys Li − δi and Li + δi. Each
key maintains a pointer to its counterpart. There can be at most one dirty tree in the system, as
will be explained later.

A dirty tree Td is associated with the following attributes: (1) LUVd, which is the last update
received by the system. (2) An interval Id = [Vlow, Vhigh]; if an update falls within this interval,
it will not affect any subscriptions indexed in that tree. Suppose that we merge the clean trees
after an update v; the resulting dirty tree will have the attribute LUV = v, Vlow would be
the minimum Li + δi over all subscriptions i, Vhigh would be the maximum Li − δi over all
subscriptions i.

Handling updates using a dirty tree. Suppose an update v ′ comes in which could affect
the dirty tree i.e., the update falls outside the interval Id. We look up v′ in the dirty tree, and
traverse the leaves towards LUVd, and we will encounter all the affected subscriptions. Now,
instead of reinserting these subscriptions into the dirty tree, we simply delete them and create a
new materialized clean tree Ti (this is possible because all these affected subscriptions will now
have the same last notified value). The default single virtual tree Ti,1 over the new materialized
clean tree will have attribute LNVi,1 = v′, while δmin

i,1 and δmax
i,1 depend on the actual bounds of

the affected subscriptions. The dirty tree’s attributes are updated as follows: First, Id is updated
based on the set of affected subscriptions. Then, LUVd is updated to v′. Since the split of
a dirty tree does not produce any more dirty trees, there can be at most one dirty tree in the
system. Subsequent updates are handled in a similar fashion. The next merge operation would
involve all the clean trees as well as the remainder of the dirty tree (the size of the dirty tree
monotonically decreases with incoming updates). We propose to develop and use a cost model
to determine the appropriate merging frequency.

The advantage of inserting the affected subscriptions into a new materialized clean tree in-
stead of reinserting them into the dirty tree is that handling subsequent updates is very efficient
on clean trees. This is because in a clean tree, when subscriptions are affected, they do not need
to be deleted and reinserted as explained previously. We just need to define a new virtual clean
tree which is a constant time operation. New subscriptions are handled by inserting them into
the dirty tree. Alternatively, if there is a newly created materialized clean tree with the last up-
date, we could insert the subscription into that clean tree. Note also that when there are multiple
virtual clean trees, there could be more than one virtual clean tree with the same last notified
value. These virtual clean trees can be removed from their respective materialized clean trees,
and merged into a single materialized clean tree to reduce the number of trees in the system.
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5.3.3 S-CN with passive subscriptions in network

Consider how we can support the dissemination of per subscription notification conditions in a
stateless content-based network. An update could potentially affect any large subset of subscrip-
tions, so we desire a semantic description of affected subscriptions to avoid sending a unicast
message for each affected subscription.

In this section, we make the assumption that subscriptions are not active, i.e. they cannot
migrate to different brokers in the content- based network based on their per-subscription state.
It would appear that in such a network, it would not be possible for the network to statelessly
support the kind of notifications that we have been considering. However, it turns out that we
can support such a dissemination as described next.

Assume that we have to index the subscriptions in the content-based network in a static
manner. This is done by the following reformulation techniques:

• (Message format) Each database update is reformulated into zero or more notification
messages of the form

〈INTERVAL LOW, INTERVAL HIGH, UPDATE〉

and injected into the network.

• (Subscriptions) Each subscription Si with bound δi is reformulated into a predicate
(INTERVAL LOW < δi ≤ INTERVAL HIGH)

over the notification message. Upon receiving a message matching the reformulated pred-
icate, a subscriber simply updates its last notified value (Li) to UPDATE.

• (Ignorable updates) They are updates which have the same value as the previous update.
They are simply discarded by the server.

Reformulating other updates. The basic idea is for the server to maintain a set of inter-
vals. Intuitively, an interval is a contiguous range of bounds for a particular last notified value
(one last notified value could have more than one such contiguous range). An interval Ii is as-
sociated with three attributes, (1) the last notified value (LNVi), (2) the lower edge of the bound
(Blow), and (3) the upper edge of the bound (Bhigh). We represent an interval by the notation
[LNVi, Blow, Bhigh]. At the beginning, there is just one interval [v0, 0, δlimit] in the set.

Assume that the last update was v. When a new update v ′ arrives, an interval Ii is affected if
v′ falls outside the range [LNVi −Blow, LNVi + Blow]. For such an affected interval, if v ′ lies
outside the range [LNVi − Bhigh, LNVi + Bhigh], it implies that the entire interval is affected
and hence this interval’s attributes are updated to [v ′, Blow, Bhigh]. In addition, a reformulated
message 〈Blow, Bhigh, v′〉 is sent out.

On the other hand, if v′ lies within the range [LNVi − Bhigh, LNVi + Bhigh], that affected
interval is actually only partly affected. Hence, it is split into two intervals as follows: the
interval from Blow to |v′ − LNVi| is affected and is split into a new interval with attributes
[v′, Blow, |v′ − LNVi|]. The remaining interval is updated with the new range, and is therefore
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Figure 24: Example interval splits for the sequence of updates 100 → 105 → 108.

set with the attributes [LNVi, |v
′ − LNVi| , Bhigh]. One reformulated message is sent out:

〈Blow, |v′ − LNVi| , v
′〉.

As a concrete example, refer to Figure 24. The x-axis denotes update value, while the y-axis
denotes the bounds. The maximum bound is 10 in this example. Initially, the last update is
100 and there is just one interval [100, 0, 10]. An update of 105 is shown in the second figure.
As seen, the original interval splits into two intervals with attributes [100, 5, 10] and [105, 0, 5]

respectively. One reformulated message is sent out: 〈0, 5, 105〉.
A second update of 108 now comes in, and this update happens to split both of the current

intervals. This gives rise to a total of four intervals: [100, 8, 10], [105, 3, 5], [108, 0, 3], and
[108, 5, 8]. Two reformulated messages are sent out: 〈0, 3, 108〉 and 〈5, 8, 108〉.

An update can also cause some intervals to merge. If two intervals have contiguous bound
ranges, but are separate because they have different last notified values, and an incoming update
affects both of them, they can be merged into a single range after the update. As an extreme case,
we define a large update as an update v ′ such that |v′ − v| ≥ δlimit, where v is the last update
before this one. Such a large update would merge all intervals back into just one, [0, δ limit].

An interesting feature of this technique is that the server does not need knowledge of sub-
scriptions to maintain the set of intervals, although this knowledge if present could be used to
avoid maintaining intervals that contain no subscriptions. Thus, we see that an update can be
formulated into a group of disjoint intervals, which can be processed by a stateless content-
based network with passive subscriptions. The network could also be implemented specifically
for this formulation using Chord-like distributed hash tables or even a content-addressable net-
work (CAN) [44]. Finally, note that insertion of new subscriptions is trivial because we do not
depend on subscriptions for defining intervals.

Maintaining the intervals. If we have a large number of intervals, we need to be able to
quickly identify affected intervals. We use a B-tree to index intervals as follows. An interval
[LNVi, Blow, Bhigh] is indexed twice with keys LNVi − Blow and LNVi + Blow respectively.
When an update v′ comes in (assuming the last update was v), we look up v in the B-tree and
traverse the leaf nodes in the direction of v ′ until we reach v′. This will allow us to encounter
exactly the set of affected intervals. An affected interval will need to be deleted and reindexed
into the B-tree using its new attributes.
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Managing the number of intervals. The main limitation of this technique is that the
number of intervals that need to be sent out grows with the number of updates, and is O(k2) is
the worst case (although we expect it to be closer to linear in practice, with some updates causing
a merge of adjacent intervals and large updates shrinking the number back to 1 as described
earlier). In the absence of large updates, there are other techniques we can employ to keep the
number of intervals bounded. One technique involves relaxing the subscription semantics in
a disciplined manner using the concept of tolerances, and is detailed in Section 5.4. Another
technique can be applied if subscriptions do not mind rarely receiving unnecessary notifications.
In this case, the system can merge small intervals that are adjacent, into a single larger interval,
by simply sending out a single reformulated message with the latest notification value to the
larger interval. The selection of intervals to merge could be based on statistics to ensure that
minimum number of subscriptions receive such unnecessary notifications.

A network with passive subscriptions following the strict notification semantics cannot merge
intervals because that would need a knowledge of the last notified value at the subscriptions. As
a result, the performance could continue to degrade with updates, in the absence of merging
opportunities. The desire for a smaller number of messages to be sent out by the server (per
incoming update) brings us to a content-based network with active subscriptions, which we
describe next.

5.3.4 S-CN with active subscriptions in network

If we allow subscriptions to be active i.e. they can move between brokers to aid in dissemi-
nation, then we can have a simpler interface between the server and the network with just one
reformulated message per update. This is however at the expense of potential reorganization
traffic for the active subscriptions.

We can organize a content-based network using a content-addressable network (CAN) [44]
which is constructed for this purpose. CAN-based dissemination techniques have previously
been used for both stateless [25] and stateful [15] subscriptions; here we extend their use to
handle per-subscription notification conditions.

We define a two-dimensional CAN space, where a subscription Si is mapped to the point
(Li − δi, Li + δi). A point (v, v) along the diagonal corresponds to an update point with value
v. If the last update is v′, it is clear that all subscriptions would lie in a CAN shaped as a right
triangle with bottom-right corner (v ′, v′) and the two other corners being (v′ − 2δlimit, v

′) and
(v′, v′ + 2δlimit). We refer to this triangular region as the subscription triangle. Examples of
subscription triangles are seen in Figure 25 (the figure is explained in a later paragraph).

Handling updates. The system has knowledge of the last update v, i.e. the bottom-right
corner of the subscription triangle. When a new update v ′ enters the system, it effectively slides
the subscription triangle to now rest on the point (v ′, v′). The subscriptions that lie outside
the new subscription triangle are the ones that are affected by this update. The set of affected
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Figure 25: Example subscription movement on notification 100 → 105 → 102.

subscriptions on an update can succinctly be described by the server using a single message with
the update and tagged with a cutoff point [15] (v − 2δlimit, v

′). The rectangle spanning (v, v)

and the cutoff point contains all the affected subscriptions. Hence, we adopt the following
simple routing scheme to reach all affected subscriptions. First, the update is routed to the
point (v, v). Secondly, the update is propagated to the upper- left of this point in CAN space,
with the routing being terminated beyond the cutoff point. Publish/subscribe systems such
as Meghdoot [25] can easily be extended to support cutoff points. Note that the rectangular
routing region defined by the cutoff point is actually slightly larger and simpler than the actual
affected region (see Figure 25), but the extra space covered will not have any subscriptions.
All subscriptions mapping within the routing region are notified with the update v ′ and these
subscriptions are moved to their new locations, which is simply (v ′−δi, v

′+δi) for subscription
Si. All these affected subscriptions move to the altitude (which passes through (v ′, v′)) of the
new subscription triangle (because their bounds are now recentered around their new updated
value).

As a concrete example, refer to Figure 25. On the left, we show a sample CAN with the
latest update being of value 100, and δlimit = 8. Zone divisions and axes are not shown for
clarity. Subscriptions are indicated by dots in the figure. When an update of 105 comes in, all
subscriptions in the shaded region are affected (the affected subscriptions are patterned). The
4 affected subscriptions move to the altitude of the new subscription triangle, as seen from the
center of the figure. Now, suppose an update 102 comes in. Only 2 subscriptions are affected,
and these are moved to their new location in the new triangle as seen in the figure to the right.

The above description is analogous to the server side technique of maintaining a dirty tree
such that every time an update comes in, all the affected subscriptions are reinserted into the
tree immediately. Similarly, every time an update comes in, although the affected subscriptions
can easily be located by a simple reformulated message, they all have to be moved to their new
zone owners.

We can improve performance by leveraging the following observation. All the subscriptions
affected by an update have the same last notified value (after the update). Let us examine a
scheme where we insert them into a new CAN (called Cnew) instead of the main CAN. Cnew has
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Figure 26: Clean CAN splits into 2 virtual CANs (no subscription movement) on notification
105 → 102.
all its subscriptions along the altitude of the subscription triangle. This characteristic is similar
to that of a clean tree. When a new update comes in, we do not need to perform subscription
movement for this CAN. All we need to do is define two virtual CANs over Cnew. For the first
virtual CAN, is just the original one itself. The second one, however, is addressed on the same
set of zone owners, except that a translation is performed on coordinates before routing. In
effect, instead of sliding the affected subscriptions towards their new position in the CAN, we
slide the CAN coordinates in the opposite direction as this does not involve physical movement
of subscriptions. We are able to do this only because of the special property of this CAN
that it started off with all subscriptions having the same last notified value. The result of this
operation is that there is one original CAN, and one clean CAN which defines two virtual CANs
in it. Clean CANs can periodically be merged back to the original CAN just as in the merging
operation of clean trees into the dirty tree. We propose to investigate the tradeoffs involved in
these alternatives in greater detail.

To make the above description more concrete, let us go back to the example described pre-
viously, immediately after the first update of 100 → 105. As noted previously, 4 subscriptions
were affected by the update. Under the new approach, we would insert these four subscriptions
into a new CAN which is shown in Figure 26. This is a clean CAN because all the subscrip-
tions have the same last notified value, with all subscription centered around their bounds. Now,
when the next update 105 → 102 comes in, we can reach the affected subscriptions using the
usual cutoff point. However, the affected subscriptions in the clean CAN are not moved. In-
stead, the CAN is split into two virtual CANs. The first of these is the original clean CAN and
contains only those subscriptions unaffected by this update. The second virtual CAN contains
the affected subscriptions, and the following mapping is performed on the CAN coordinates in
this virtual CAN: a request for coordinate (a, b) is translated to a request for (a + 3, b + 3).
In other words, instead of the affected subscriptions sliding to the lower-left, the CAN is ef-
fectively slid to the upper-right. We can maintain, for each virtual CAN, the mapping and the
range of subscriptions in that virtual CAN. Using this, when a new update comes in, we would
simply check if a virtual CAN is affected. If yes, the message would be sent to that virtual CAN
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using the mapped coordinates.
The downside of this technique is the increase in number of virtual CANs with updates.

However, the advantage is that subscriptions do not need to be relocated each time they are
affected. A subscription may get relocated from the original CAN to a clean CAN the first time,
and once it is in a clean CAN, we would no longer need to perform relocations because we
would then split the clean CAN into virtual CANs instead of relocating subscriptions. However,
a larger number of virtual CANs means that we would need to perform matching of an incoming
message to check which virtual CANs may be affected, and for each affected CAN we would
need to send out a message into that CAN. The growth in number of virtual CANs is similar
to the growth of intervals in S-CN with passive subscriptions, i.e. after k updates there may be
O(k) clean real CANs (because in the worst case, each update may break off a chunk of the
original CAN into a new clean CAN). There may be a worst case of O(k2) total virtual CANs
within these clean CANs. Hence, when the number of virtual CANs is large, we can perform
a merge operation where all the clean CANs are merged back into the original CAN and the
process repeats. Finally, note that new subscriptions can be supported by inserting them into
the original CAN.

5.4 Value-based notifications with tolerance
We can also allow more relaxed semantics for notifications, by introducing a tolerance factor.
A subscription i can specify, in addition to a bound δi, a tolerance ti. The tolerance specifies
how strictly the user wishes to control the receipt of unsolicited notifications, and is expressed
as TOLERANCE ti.

A subscription using the additional clause would have the form Si = SELECT PRICE FROM

STOCK WHERE filter NOTIFY WHEN RESULT CHANGED BY δi TOLERANCE ti. The meaning of
this subscription, assuming that the last notified value is Li, is: (1) Si must receive any update
that falls outside the interval (Li − δi, Li + δi), and (2) Si may receive any update that falls
outside the interval (Li − δi + ti, Li + δi − ti).

Tolerance can take any value from 0 (where it is equivalent to the strict notification se-
mantics) to δi (which is equivalent to the subscription being ready to accept any notification
regardless of its bound).

To see how tolerances can reduce the notification costs, consider a simple case in which every
subscription specifies the same tolerance t. We see how this can reduce the maximum number
of bound intervals that may need to be sent out by S-CN with passive subscriptions. Consider
a simple partitioning of the interval [0, δlimit] into sub-intervals of size t. Whenever we need
to break an interval into two sub-intervals, we simply constrain the interval to break only along
the immediately lower partition boundary. This means that in the worst case, there would only
be dδlimit/te intervals, instead of min(N, k2) intervals in the case with no tolerances. It is easy
to see that in this case, although the maximum tolerance is t, the average tolerance (assuming a
uniform spread of subscriptions over the complete bound interval), is actually t/2.
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Tolerances may also be used to perform periodic interval merging to reduce the number of
intervals. For example, in case of unlimited tolerances, we can simply perform a broadcast
notification over the entire bound interval, and merge all the interval fragments into a single
one. Note that such a notification effectively allows the publish/subscribe middleware to forget
all the previous disseminated updates that would otherwise have been necessary to retain for
precise notification semantics. This operation can be done periodically or when the number of
fragments exceeds a given threshold.

As part of our work, we will further investigate the opportunities for optimizations that are
presented by the proposed relaxed semantics.

6 The Road Ahead
6.1 Statistics-based wide-area publish/subscribe
As an area of future work, we plan to look closely at runtime optimizations in a publish/subscribe
system. In the past, publish/subscribe design has been largely based on specific types of sce-
narios, for example, range queries. The optimization techniques take advantage of the prop-
erties of these scenarios. However, we can also leverage the runtime characteristics of the
publish/subscribe system to improve performance. Semcast [40] is an example of a preliminary
effort at leveraging such runtime characteristics, but it is limited to channel-based allocations.
The basic idea behind SemCast is that the system creates one or more channels, where a channel
is a tree-based dissemination structure with a single root. Each channel has a channel descrip-
tion which identifies the events that need to be assigned to the channel. When an event comes
in, it is assigned to one or more channels. Every event is propagated to all the nodes within a
channel. Although channels allow for faster matching, every event assigned to a channel will
reach all the nodes in the channel regardless of the subscriptions. A content-based network,
on the other hand, performs matching at every node on the path from the source. This means
that messages that do not need to reach nodes in a subtree can be truncated. SemCast in this
case would rely on assigning such subtrees to a separate channel. Since the number of channels
that the system can support is limited, the approach would not be able to perform in-network
filtering that is as effective. In addition, SemCast does not consider the assignment of clients
to gateway brokers based on dynamic statistics and semantic information. For example, many
clients having very similar interests may be assigned to different gateway brokers. Finally, even
among the gateway brokers, although SemCast forms channels based on semantic overlap and
overlap based on dynamic heuristics, there is no guarantee that such a technique will lead to a
minimum cost channel assignment.

We plan to take a broader view of using semantic information and dynamic statistics in
optimizing traditional forms of stateful and stateless publish/subscribe systems such as content-
based publish/subscribe systems.
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6.1.1 Intelligent network design in wide-area publish/subscribe

We first describe an often overlooked issue in designing networks that are suitable for wide-
area publish subscribe. Recall that such a system consists of an overlay network of brokers
that cooperate to disseminate data. A data source registers itself with some broker, which then
acts as the source of data. An interested subscriber registers its interest with some broker. A
content-based routing tree is rooted at the source broker and spans all the interested brokers,
and events are thus sent to the brokers which need the data. The broker themselves unicast the
data to all subscribers which are registered with them and are affected by the event.

Prior work has assumed either that subscribers attach themselves to the closest broker [4], or
use simple semantic considerations (like the simple exclusive partitions [20]) to decide which
broker to attach to. Neither alternative is attractive: the former may cause every event to be de-
livered to nearly every broker, and the latter may require many subscribers to attach themselves
to brokers that are located very far away.

To clarify the problem, assume that we have a content-based publish/subscribe system with
attributes from a set A, in the event schema. Further, let there be k brokers and N subscribers.
The event space is a |A|-dimensional space over all possible events, where any event can be
mapped into a point in the event space. A subscription provides values (or ranges) for some
non-empty subset A′ of the attributes, and can be mapped to a shape in the event space. For
example, if |A| = 2, a subscription can be a point, horizontal or vertical line, or a rectangle in
the two-dimensional event space. If we assume that subscriptions are all range-subscriptions,
every subscription would be a rectangle in the event space. We assume knowledge of a window
of the E most recent events.

The general assignment problem consists of three phases:
(1) Partitioning: Create a partitioning P of the event space, which consists of k partitions

of the event space. The partitions need not be disjoint, but need to cover every possible sub-
scription. For any partitioning P , every event in the event history stabs one or more partitions.
That event needs to reach all the stabbed partitions. We define the filtering power [20] of a parti-
tioning to be the average number of partitions stabbed by an event from the event history. Thus,
we have an infinite number of possible partitionings, each with a potentially different filtering
power. In general, a partition can be any shape, and it does not have to be a single contiguous
chunk. However, as a simplification, we can impose some constraint on the shape. For example,
we may require that partitions be rectangular or a union of two rectangles, and so on.

(2) Broker assignment: Given a partitioning Pi, we have to assign the k partitions in this
partitioning to the k brokers (one partition per broker). There are k! possible broker assignments
for every partitioning,

(3) Subscriber assignment: Given a partitioning and an associated broker assignment, the
next step is to assign subscriptions to brokers. A subset of partitions whose union covers a
subscription is called a covering subset of the subscription. A subscription could have many
possible covering subsets (the entire set of partitions is trivially one such covering subset). We

62



can focus on only the minimal covering subsets (there could be more than one unique mini-
mal covering subset). Minimal covering subsets are simply those covering subsets that do not
contain a subset which is itself a covering subset. For each minimal covering subset (for a par-
ticular partitioning and broker assignment), we define a per-subscriber assignment cost which is
a function of the latencies from the subscriber to all the brokers that are assigned the members
of that covering subset. The subscriber assignment cost is the total cost over all subscribers.

For any given partitioning, we can identify the lowest cost subscriber assignment for each
of the k! broker assignments. The overall cost of the partitioning and broker assignment, then,
is a function of the filtering power and the lowest-cost subscriber assignment for that partition-
ing and broker assignment. The optimal solution is the partitioning, broker assignment, and
subscriber assignment that yields the lowest overall cost.

The general solution of this problem may be intractable, and so we propose to develop
heuristics that do well in practice. The heuristics would involve the use of collected statistics.
For example, the broker assignment and subscriber assignment phases use statistics on latencies
between subscribers and all the brokers in the system. This could be approximated using tech-
niques such as Global Network Positioning to map nodes to points in a network space. We will
also need to maintain event statistics. Such statistics may be maintained as a histogram over the
event window. These statistics would help in the partitioning phase. For instance, if there are a
large number of events in a certain region of the event space, we may want only one partition to
cover that region (assuming that the partition has the resources to handle the event rate), so that
these events do not have to be sent to more brokers. The goal is to reduce the filtering power of
a partitioning, and this is computed based on the available dynamic event statistics.

Subscription/event biclustering. Another form of dynamic dissemination organization
uses biclustering over events and subscriptions. This is useful when subscriptions are black-
boxed. The basic idea behind biclustering is that we can model events and subscriptions as a
bipartite graph. An edge between an event and a subscription indicates that the event affects
that subscription. We wish to find a partitioning of this bipartite graph such that the total cost
of edges between partitions in minimized. Each partition could be assigned to a broker. When
a new event comes in and has been seen before, we first locate the partition associated with that
event. The partitioning strategy assures us that most affected subscriptions are present in this
partition, and hence they would receive the events at low latency. We can build a dissemination
tree rooted at this broker, and spanning all other brokers that may contain subscriptions affected
by this event. This tree can be used to propagate the event to all the other interested subscribers.
Disseminating new incoming events in such a scenario is a more challenging problem because
we do not have a priori knowledge to guide us to the correct partition with most affected sub-
scriptions. We could use a learning algorithm that uses history to estimate the best partition that
an event needs to be assigned to. We will address these challenges as part of future work in this
domain.
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Publish/subscribe system Database system
Event Query

Dissemination plan Execution plan
Overlay maintenance Index update

Event history statistics DB statistics (e.g., histograms)

Table 5: Parallels between publish/subscribe systems and database management systems.

6.1.2 Dynamic optimization framework

Depending on the dynamic event and subscription characteristics, different techniques may
need to be employed by a publish/subscribe system. The interface between the network and
the database is sensitive to the characteristics of the workload placed on the system. Similarly,
on the database side, the use of different types of index structures is appropriate under differ-
ent scenarios. This means that we need to introduce an optimization framework that chooses
the appropriate interface between the database and the network. This optimization would be
guided by both online statistics and the semantics of subscriptions. This unified view effec-
tively treats different server processing and network dissemination techniques as indexes (with
the associated costs) whose materialization and usage is driven by the optimization framework.
We propose to develop cost models for online optimizer decisions.

We use Table 5 to further illustrate the parallels between query optimization in a database
system, and technique selection in a wide-area publish/subscribe system.

As a concrete example of the importance of such an optimization framework, first consider
the need for subscription-based choices. If most subscriptions require every published event
(for example, in case of SELECT * type of subscriptions or subscriptions with wide selection
ranges), the best strategy may be to use a broadcast mechanism (with no database or subscription
state at the server) and rely on filtering at subscribers to eliminate false positives. On the other
hand, if different subscriptions request different ranges of attributes over a defined event schema,
a content- based approach may be preferable. In this case, we could either eliminate the server in
case of stateless subscriptions, or allow the server to maintain limited state and index structures
in case of stateful subscriptions. In case all subscriptions are stateful, and most are rarely
affected by incoming events, the ideal strategy may be to maintain more state (with simple
index structures) at a server and use unicast to reach the exact set of affected subscribers.

Secondly, if available, it is also beneficial to take event statistics into account while making
such optimization decisions. For example, assume that most events fall in the region of event
space where they affect very few subscriptions. In such a case, even if all subscriptions have
wide selection ranges, we would still prefer to use unicast as the dissemination mechanism. If
many events are found to affect the same approximate set of subscriptions, we could build a
multicast group for that set of subscriptions to enable efficient dissemination of similar future
events. The subscription and event statistics can also guide the building of a dissemination
technique in addition to the choice of strategy, for example using the techniques proposed in
Section 6.1.1.
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6.2 Batch event processing and dissemination
Further ahead, we plan to examine batch event processing and dissemination. Intuitively, it is
useful to batch incoming events as long as the consistency requirements are met. This is because
processing a batch of updates is typically more efficient than processing the events individually.
Further, dissemination of a batch of events gives more room for optimized dissemination as
compared to the dissemination of each event by itself. We will examine the tradeoffs involved
in batching and will develop robust techniques that take advantage of situations where batching
can give us improvement in system cost while meeting the user-defined fidelity or performance
goals.

7 Related Work
The increasingly widespread use of publish/subscribe has attracted much attention from the re-
search community, as evidenced by the large number of publications in the annual International
Workshop on Distributed Event-Based Systems (since 2001). We first describe the work related
to our preliminary research efforts on distributed network querying. We then focus on the main
pieces of work that are related to our current and future areas of research.

7.1 Distributed network querying
7.1.1 Network monitoring.

A large number of network monitoring systems have been developed by both the research com-
munity and commercial vendors. Astrolabe [57] is a system that continuously monitors the
state of a collection of distributed resources and reports summarized information to the its users.
Ganglia [33] is a system for monitoring a federation of clusters. While our work also consid-
ers the network monitoring problem, we focus on supporting set-valued queries approximately
rather than aggregation queries. Our approach of bounded approximate caching and methods
for locality-aware, cost-based cache management offer better flexibility and adaptability than
these systems, which are preset to either push or pull each piece of information. Our techniques
can be used to enhance these and other existing network monitoring systems.

7.1.2 Data processing on overlay networks.

PIER [27] is a DHT-based massively distributed query engine that brings database query pro-
cessing facilities to new, widely distributed environments. For network monitoring, also one
of PIER’s target applications, we believe that bounded approximate caching meshes well with
PIER’s relaxed consistency requirement, and our DHT-based caching techniques can also be ap-
plied to PIER. Locality-aware DHTs have been used to build SCRIBE [12], a scalable multicast
system, and SDIMS [58], a hierarchical aggregation infrastructure. Our DHT-based approach
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also uses a locality-aware DHT, but for the different purpose of selecting and locating caches;
in addition, we use reverse DHT routes to achieve aggregation effects on the owner side.

7.1.3 Approximate query processing for networked data.

The idea of bounded approximate caching has been explored in detail by Olston [36], along
with techniques such as adaptive bound setting, source cooperation in cache synchronization,
etc. We apply bounded approximate caching in this paper, but we focus on how to select caches
across the network to exploit locality, and how to locate these caches quickly and efficiently to
answer queries. We also extend the approximate replication scheme by allowing guarantees to
be provided not only by the owner, but also by any other cache with a tighter bound.

7.1.4 Web caching and web replication.

Web caching [43] is often done by ISPs using web proxy servers. Web replication [43] refers to
data sources spreading their content across the network, primarily for load balancing. In both
cases, the cache content is stored exactly and most often relatively stable content (e.g. images)
is replicated at static locations. They do not deal with the problem of rapidly updating data; this
means that they can afford to establish a large number of caches/replicas. Our system deals with
replication of dynamic measurements and therefore update costs are high. We reduce update
costs by caching bounded measurements, and balance update and query costs by caching at
dynamically chosen nodes in the network.

7.2 Publish/subscribe systems
A survey of data-dissemination systems can be found in [24]. We adopt the publish/subscribe
model of dissemination, which is based on aperiodic push. Other models include periodic push
(e.g., broadcast disks [2]), periodic pull (client polling systems), and aperiodic pull (classic
request/response client/server systems). Early publish/subscribe systems are based on channels
or subjects, see, for example, [35, 42]; the publish/subscribe feature of Java Message Service
(JMS) [52] also falls into this category. Channels are predefined and their granularity is often
too coarse to fit the particular interests of individual users.

Recently, research efforts have been focused on content-based publish subscribe systems
which provide fine granularity and flexibility. These can be broadly characterized as systems
where publishers publish events following a particular predefined schema, and subscribers ex-
press their interests as profiles [20] which are predicates over the schema. A large number of
such systems have been built in recent years, e.g., SIFT [59] (for text documents), ONYX [20]
(for filtering and transformation of XML messages), and the wide-area event notification ser-
vice [9]. In all these systems, subscriptions are stateless filters defined over individual mes-
sages, so they cannot express queries of interest across different messages or over the event
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history. Profiles are not powerful enough to accommodate stateful SQL-style subscription re-
quirements. ONYX supports on-the-fly transformation of an XML message according to a
subset of XQuery; but filtering and transformations are still limited to individual messages. A
few continuous query systems also support rich query languages. Unfortunately, these do not
address the problem of efficiently delivering updates over a network. ONYX has begun address-
ing this problem; however, the focus of ONYX on supporting transformation of XML messages
is different from our goal of supporting more general stateful SQL subscriptions that cannot be
processed on individual messages.

7.3 Database-side processing
Continuous query systems [31, 18, 54] and stream processing systems [1] can be regarded
as a form of publish/subscribe system where continuous queries over streams correspond to
our subscriptions. These systems provide automatic notification whenever a continuous query
result changes. OpenCQ [31] supports powerful notification conditions that refer to current and
previous database states; however, conditions cannot refer to the update history. NiagraCQ [18]
supports timer-based notification conditions. In other words, NiagraCQ allows control over the
staleness of subscriptions, but not over their accuracy, in terms of user-defined metrics.

The idea of group processing has been identified and used in trigger processing and con-
tinuous query processing systems [26, 18]. Work on scalable database trigger processing [26]
focuses on exploiting common patterns in triggering conditions (like our notification condi-
tions). Work on scalable continuous query processing (e.g., [18, 32]) focuses on exploiting
common patterns in continuous queries. In particular, predicate and query indexing techniques
have been developed in [26, 18, 21] to speed up group processing. The upper hull computed for
dissemination is similar to computing dynamic skyline in [39] which uses a regular R-tree.

7.4 Network dissemination
A server needs to deliver notifications to affected subscribers over a network. The problem of
efficient message delivery has long been tackled in networking and distributed systems research.
The traditional delivery mechanism is based on client polling. The next generation of delivery
mechanism uses real push techniques based on group-based multicast protocols, e.g., IP multi-
cast. Multicast provides a perfect interface for channel-based subscription services. IP multicast
has also been exploited in building publish/subscribe systems that support more general filter-
style subscriptions [38]. Because of slow adoption of IP multicast, there have been proposals
for supporting application-level multicast using an overlay network (e.g., [45, 61, 11]). Often-
times, they use an overlay network called distributed hash tables, which provide a convenient
hash table abstraction over the participating overlay nodes (e.g., [48, 44, 51, 60]). Bullet [29],
on the other hand, creates a mesh over the multicast dissemination tree in order to improve
throughput. The problems with multicast were discussed earlier. Although we have included
multicast as a comparison in some of our work, the problem with most multicast techniques is
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that of number of groups. In order to implement publish/ subscribe, we need a large number of
groups (one for each possible subscriber set) and these techniques do not scale to large number
of groups. Group reduction techniques [38] require the end subscriber to have the ability to filter
out unwanted messages. The group size problem is seen in some of our experimental results
with our implementation of multicast, where we avoided the need for large number of groups
by encoding the set of subscriptions as part of the message.

An alternative dissemination interface is content-based networking [10, 5, 13]. A content-
based network can be used to implement a publish/subscribe system supporting filter subscrip-
tions. A number of such systems have been developed (e.g., [55, 53, 25]). SemCast [40] pro-
poses a number of techniques for efficient dissemination including the use of dynamic statistics.
However, subscriptions in all these systems are limited to stateless filters. Nevertheless, they
can still be used by our system as the messaging layer for delivering notifications once they are
computed. We use message and subscription reformulation to enable traditional content-based
networks to handle stateful queries.

7.5 Notification conditions and bounds
In Section 5, we introduced bounds as a means of specifying notification conditions. Bounds
have been studied extensively in database literature. Chris Olston [36] proposes bounds in the
context of approximate caching, where caches maintain bounds on the source data and sources
update the caches whenever bounds are violated. He does not consider efficient indexing or
dissemimnation structures for these bounded approximate caches, and our work can be though
of as such an extension although in a completely different setting and scale. In [37], the focus
is on how these bounds are set adaptively based on query workloads. However, we assume that
subscription notification conditions are specified in advance and cannot change with time.

In the context of dynamic data dissemination, the work by Ramamritham et al [50, 49] is
relevant in that they are also targeting bounds over values. However, they assume a different
notification semantics which is weaker than ours; they assume that subscriptions (repositories
in their applications) are ready to receive any notification even if it does not violate the bounds.
However, we focus on stricter semantics with disciplined relaxation using tolerances. In addi-
tion, they do not consider server-side approaches, however we have developed efficient indexing
structures with periodic maintenance to make the server-side approach feasible. In addition, we
have introduced several network-dissemination strategies for our strict notification semantics
using content-based networks.

8 Conclusions
As the Digital Age has matured, we see a clear trend towards applications with more and more
sophisticated data needs. Publish/subscribe systems, with their push-based technology, have
proven themselves to be very scalable and more adaptable to modern applications than tradi-
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tional dissemination technologies such as periodic pull. However, the current generation of
wide-area publish/subscribe systems, which are mostly stateless and content-based, lack a rich
subscription model to capture modern data needs. Continuous query systems that provide richer
subscription models do not consider the dissemination bottleneck which is core in a wide-area
publish/subscribe system.

Our research approaches to bridge this problem by approaching it from a number of different
angles: (1) We advocate a powerful subscription model that scalably supports the application
needs, data sizes, and data rates of tomorrow. (2) We believe that there is a need to design the
right interface between the database and the network in order to maximize performance while
using richer subscription models. (3) We propose a holistic view of publish/subscribe systems
where processing and dissemination is guided by an optimization framework that takes runtime
as well as semantic statistics into account.

Towards these goals, we first examined the data needs of some typical wide-area applications
(network monitoring and resource querying) and developed techniques in Section 3 to efficiently
support them using approximate caches to which updates are pushed by publishers. We showed
in Section 4 that rich stateful subscriptions such as range- MIN can be scalably supported in
publish/subscribe systems by designing the right interface, and by performing smart message
and subscription reformulation. We have begun looking at scalable support for per- subscription
notification conditions in a wide-area publish/subscribe system, by again approaching the prob-
lem from the interface perspective. Our initial results were discussed in Section 5. Finally, we
advocate the use of runtime system statistics to improve the system along a number of vectors,
including good subscription and broker assignments and helping an online optimizer to choose
the correct indexes and dissemination techniques based on these statistics. These ideas form the
basis for our future work, and are briefly described in Section 6.
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