
ProSem: Scalable Wide-Area Publish/Subscribe

Badrish Chandramouli ∗ Jun Yang
Pankaj K. Agarwal Albert Yu Ying Zheng

Department of Computer Science
Duke University, Durham, NC 27708, USA

ABSTRACT

We demonstrate ProSem, a scalable wide-area publish/subscribe

system that supports complex, stateful subscriptions as well as sim-

ple ones. One unique feature of ProSem is its cost-based joint op-

timization of both subscription processing and notification dissem-

ination. ProSem uses novel reformulation techniques to expose

new alternatives for processing and disseminating data using stan-

dard stateless content-driven network components.

Categories and Subject Descriptors: C.2.4 [Computer Commu-

nication Networks]: Distributed Systems—Distributed applications

General Terms: Design, Experimentation, Performance

1 Introduction

The ubiquity of the Internet has generated unprecedented demand

for information. A publish/subscribe system is well-suited to the

task of matching data recipients (subscribers) to data providers

(publishers). There has been a lot of work on publish/subscribe

systems in both the database and networking communities. The ini-

tial systems were topic-based (e.g., SCRIBE [3]), whereas the next

generation of systems (e.g., Gryphon [1]) supported more com-

plex subscriptions that could specify predicates over the contents

of individual events. However, neither model captures the com-

plex data needs of modern applications. For instance, users of-

ten want data that are correlated or aggregated over event history

and database of related information. Moreover, users may pre-

fer to receive updates only when certain user-defined notification

conditions are met. Some efforts have been made by the database

community in supporting complex subscriptions (e.g., Cayuga [6]).

These systems focus on subscription processing at a server, and do

not address how to notify subscribers over a network. Standard

practices—unicasting notifications or letting subscribers poll for

notifications—have severe scalability problems with a large num-

ber of subscribers over a wide area.

Fundamentally, a wide-area publish/subscribe system must han-

dle subscription processing as well as notification dissemination

(henceforth called prosemination to emphasize their inseparabil-

ity). We have developed holistic prosemination techniques for many

types of subscriptions. These techniques offer orders-of-magnitude

improvement in performance over traditional, non-holistic schemes.

Hence, we are building a publish/subscribe system called ProSem,

named after “prosemination” to signify our novel holistic approach

to prosemination. Besides joint optimization, ProSem has several

additional features that also distinguish it from other systems:

∗Contact author: badrish@cs.duke.edu

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

• ProSem supports complex, stateful subscriptions, e.g.: “keep

me informed of stocks with the minimum price-to-earning ratio

in a certain risk range,” “notify me when the price of IBM has

changed by more than 3%,” etc. Furthermore, ProSem aims

at supporting such subscriptions on an Internet-scale. Beyond

exploiting common subscription predicates, ProSem uses sub-

scription indexing techniques specially developed for certain

subscription types to scale to millions of subscriptions.

• Using a novel technique called reformulation, ProSem is able

to support complex, stateful subscriptions on top of standard

network substrates that otherwise only support stateless sub-

scriptions. This approach avoids pushing complicated applica-

tion logic into the network, enforces a clean interface between

the server and the network, and allows the use of an “off-the-

shelf” content-driven network (CN) [5]—a term that encom-

passes many network substrates including content-based net-

works [2] and overlay networks supporting range searches.

• ProSem recognizes that the best prosemination strategy may

differ for different events and different groups of subscriptions.

Therefore, ProSem uses cost-based optimization to choose the

best prosemination strategy among a set of available alternatives

at run-time, according to user-defined system-level objectives.

Although some building blocks of ProSem have been introduced in

recent work [4, 5], ProSem is the first attempt at combining and im-

plementing these building blocks across various subscription types

in one system. ProSem’s run-time optimization of prosemination

is also original.

2 Preliminaries

We model a publish/subscribe system as consisting of (1) publish-

ers who publish events which are modeled as updates to a database,

(2) subscribers who declare their interests in data (called subscrip-

tions) as queries over the database, and (3) the middleware—a server

and an optional network of brokers—responsible for supporting the

subscriptions. As a running example, consider the database view

Stock(Symbol, Price, Risk, PER) tracking the up-to-date infor-
mation for each stock, including the stock symbol, current price,

risk factor, and price-to-earning ratio, a popular measure of stock

quality. For simplicity, suppose that published events follow the

schema 〈Symbol, Price, Risk, PER〉, and the attributes reflect their
new values after the update.

A subscription is stateless if we can determine whether and how

to update it by examining an incoming event itself, without refer-

ring to the database or event history. For instance, a subscription of

the form “SELECT * FROM Stock WHERE x1 ≤ Risk AND Risk

≤ x2” is stateless; it is affected by any event with Risk ∈ [x1, x2].

A subscription is stateful if we cannot process it by simply ex-



Figure 1: High-level design. Figure 2: Server architecture. Figure 3: Reformulation.

amining the incoming event. Consider “SELECT MIN(PER) FROM

Stock WHERE x1 ≤ Risk AND Risk ≤ x2.” This subscription

is stateful because it may or may not be affected by an incom-

ing event, depending on whether there is some other stock with

Risk ∈ [x1, x2] and PER lower than that of the event. Moreover,
if an event raises the PER of a stock, subscriptions that previously

had it as their minimum may need to look for new answers.

3 System Overview

Figure 1 shows the overall system design of ProSem. New sub-

scriptions are registered with the server through a subscriber inter-

face. Publishers deliver events to the server through a publisher in-

terface. This interface also supports wrappers that poll Web pages

or RSS feeds to generate events, as well as synthetic event gener-

ators for testing and experiments. The server processes events and

uses the network interface to notify subscribers, either with direct

IP unicast or through an overlay network of brokers. We rely only

on standard, off-the-shelf network substrates that do not by them-

selves support application state; we use reformulation (Section 3.1)

to support stateful subscriptions over a stateless network interface.

Figure 2 shows the architecture of the ProSem server. The server

maintains the database (of events and related information) as well

as the set of active subscriptions. ProSem groups subscriptions by

types. For e.g., all range-min subscriptions with template “SELECT

MIN(PER) FROM Stock WHERE x1 ≤ Risk AND Risk ≤ x2”

have the same type, where each instance is parameterized by (x1, x2).
Dividing subscriptions into groups allows us to apply specialized

indexing and group-prosemination techniques for each type.

ProSem reads each incoming event from an event buffer and

sends the event to the event preprocessor, which determines (by

analyzing schema and subscription templates) the set of subscrip-

tion types potentially affected by the event. ProSem then uses a

cost-based optimizer to choose the best prosemination strategy for

each subscription type. The chosen strategies are then carried out

by the event processors (specialized for each subscription type).

After the event has been processed, the server updates the database

and associated indexes accordingly, and moves on to the next event.

3.1 Prosemination Strategies

Stateless Subscriptions We support two alternatives for stateless

subscriptions. First, the server can compute the affected subscrip-

tions and unicast to each one. Second, we can use a content-driven

network (CN) [5] deployed over a set of brokers, where each broker

is responsible for notifying a subset of the subscriptions. CN di-

rectly supports stateless subscriptions: It allows message recipients

to declare their interests to the network as predicates over message

contents; senders simply inject messages into CN, which automat-

ically forwards them to all recipients with matching interests.

Stateful Subscriptions For stateful subscriptions, we support sev-

eral alternatives which vary in the way they interface server pro-

cessing and network dissemination.

• Enumeration. The server computes the list of affected subscrip-

tions along with notification contents for each of them. Noti-

fications are then sent out by unicast. This approach is similar

to the first alternative above for stateless subscriptions; never-

theless, handling a large number of stateful subscriptions at the

server requires novel indexing and processing techniques.

• Relaxation. We relax stateful subscriptions into stateless ones
to be handled by CN. Then, we rely on post processing at the

brokers to compute updates to the original subscriptions. For

e.g., a range-min subscription can be made stateless by drop-

ping MIN. The downside is that maintaining the “larger” range

subscriptions at each broker leads to many more notifications.

• Reformulation. Figure 3 illustrates reformulation. For each in-
coming event, the server dynamically reformulates it into mes-

sages embedded with state information, and then injects them

into the network. Stateful subscriptions can then be reformu-

lated into stateless ones over the reformulated messages, since

the additional embedded state now allows these subscriptions to

be processed using the message contents alone. The stateless re-

formulated subscriptions can be handled directly by a standard

CN substrate.

Note that we have deliberately chosen a simpler system design for

ProSem than other stateful systems that push processing of appli-

cation state into the network, e.g., SMILE [7]. All prosemination

strategies above feature clean server/network interfaces and rely on

stateless off-the-shelf network components. We believe this design

makes ProSem easier to deploy and maintain on a large scale.

While the strategies above are general, detailed techniques differ

across different types of subscriptions. Reformulation in partic-

ular requires unconventional indexing and processing techniques,

because it changes the role of processing from computing a list of

affected subscriptions to reformulating messages, which are essen-

tially semantic descriptions of affected subscriptions. ProSem uses

reformulation techniques that were shown to outperform more con-

ventional strategies for a variety of subscriptions [4, 5]. We show

one example (range-min) below.

Example 1 (Reformulation for range-min subscriptions). Consider

again the stateful subscriptions introduced in Section 2, which ask

for minimum PER within Risk ranges of interest. Our reformula-

tion is based on the concept of maximum affected range (Mar),

which intuitively captures an event’s “extent of influence” on sub-

scriptions. The Mar of a stock update event is the maximum Risk

range in which no other stocks have a lower PER. Suppose an event

decreases the PER of a stock with Risk = x to y. We reformulate

this event into the following message:

〈NEW MIN : y,IN L : x, IN R : x,OUT L : x1, OUT R : x2〉,
where (x1, x2) is the Mar of the updated stock. (For events that

increase PER, see [4] for details.) On the other hand, we reformu-

late each range-min subscription over Risk range [xmin, xmax] as
a stateless filter over the reformulated message schema:

(OUT L < xmin ≤ IN L) ∧ (IN R ≤ xmax < OUT R).
Upon receiving a message matching the reformulated predicate, a

subscriber simply updates its minimum to NEW MIN.



3.2 Run-Time Prosemination Optimization

ProSem draws parallels from query optimization in a traditional

DBMS: alternative prosemination strategies are similar to alterna-

tive query execution plans in a DBMS. The available choices dif-

fer across subscription types, and depend on the available server

indexes and network components. For each subscription type, the

best choice may vary based on the incoming event being processed,

runtime statistics, and system performance goals.

To provide flexibility and adaptivity, ProSem uses a cost-based

optimizer to select a good prosemination plan for each incoming

event at run-time. A plan specifies a prosemination strategy for

each subscription type, and the order in which to execute them. We

briefly describe how to cost each plans and find the best plan.

ProSem models the system cost under three basic categories of

metrics. (1) Throughput is measured by the number of events per

second that ProSem can support during continuous operation. It

accounts for both server processing time (SPT) for computing out-

going notification messages and server dissemination time (SDT)

for putting these messages on the network interfaces. (2) Response

time is the delay from an event arrival until an affected subscrip-

tion receives its notification. The average response time accounts

for SPT, SDT, average propagation delay through the network, as

well as the processing order of subscription types (those processed

later experience longer response times). (3) Bandwidth consump-

tionmeasures the total traffic incurred by ProSem between pairs of

communicating nodes for notification dissemination. We define the

system cost as a weighted combination of the three metrics above.

Our goal is to choose a prosemination plan that minimizes system

cost. ProSem allows system administrators to make dynamic ad-

justments to the objective weights.

To estimate the cost of a prosemination plan, ProSem continu-

ously monitors statistics relevant to the three basic metrics. An-

other critical piece of information needed to optimize for each in-

coming event is the number of affected subscriptions for each sub-

scription type. Recall that reformulation in effect computes seman-

tic descriptions of affected subscriptions. Using these descriptions,

ProSem can estimate the number of affected subscriptions with-

out enumerating them—just like a DBMS estimates query result

size—by maintaining summary statistics about subscriptions.

ProSem demonstrates a simple yet effective optimizer based on

a greedy strategy that optimizes each subscription type separately.

When deciding the processing order among subscription types, we

give higher priority to those with lower per-subscription server costs,

in order to reduce the overall average response time.

4 Demonstration Setup

We demonstrate ProSem using a local setup that provides a more

controlled environment to showcase features. One or two laptops

host the server and simulator-based versions of the network inter-

face. Subscriptions register their interests with ProSem. On an in-

coming event, the server chooses the prosemination plan, processes

the event, computes the outgoing messages, and disseminates them

through selected network substrates. The network substrates (e.g.,

CN, unicast) perform dissemination using a simulator based on an

INET-generated network topology.

Publisher Interface Publishers can directly send event updates

to ProSem. We also use wrappers to gather data from websites,

transform it, and send it to the server. The demo uses real and

synthetic event traces to illustrate interesting trends.

Subscriber Interface Users use our customized client software

to define subscriptions and receive notifications. In addition to

“real” clients that demo observers can directly interact with, we

Figure 4: Visualizers.

also use large, synthetic subscriptions with simulated subscribers

to demonstrate scalability.

Visualization We use our customized visualizers for the demo

to show how dissemination occurs and how various choices af-

fect prosemination costs. A structure visualizer shows the network

topology and routes chosen for dissemination. It also shows the

traffic along overlay links and summary statistics (such as number

of subscriptions being handled) for each broker. The structure can

be visualized for a particular event or a range of events, for a cho-

sen subscription type. Figure 4 (front) is a screenshot based on data

from our experiments with range-min subscriptions over CN. A

time-series visualizer plots various performance metrics over time,

including throughput, response time, and bandwidth consumption.

Figure 4 (back) shows bandwidth usage from our experiments.

Demo Walkthrough We use a financial (stocks) application to

demonstrate ProSem, with real and synthetic event traces. (1) We

demonstrate support for stateless subscriptions as well as stateful

ones such as range aggregation, select-joins, and select with value-

based notification conditions. We show the process of registering

subscriptions and receiving notifications. (2) To show how pros-

emination plans work and the advantages of novel reformulation-

based prosemination strategies over simpler schemes, we use the

structure visualizer to illustrate the details involved in processing

and dissemination for several exemplifying events and subscrip-

tion types. (3) To demonstrate scalability, we use the visualizers

to compare the costs of prosemination plans for large subscription

workloads. (4) To showcase the optimizer, we dynamically alter the

optimization objective, to see how the optimizer adapts prosemina-

tion to different needs. We also show how the optimizer tailors

prosemination at run-time for each event. The adaptation is clearly

visible on our visualizers.

References
[1] G. Banavar et al. An efficient multicast protocol for content-
based publish- subscribe systems. In ICDCS, 1999.

[2] A. Carzaniga et al. Design and evaluation of a wide-area event
notification service. ACM Trans. on Computer Systems, 2001.

[3] M. Castro et al. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE JSAC, 2002.

[4] B. Chandramouli et al. On the database/network interface in
large-scale publish/subscribe systems. In SIGMOD, 2006.

[5] B. Chandramouli et al. Value-based notification conditions in
large-scale publish/subscribe systems. In VLDB, 2007.

[6] A. Demers et al. Towards expressive publish/subscribe sys-
tems. In EDBT, 2006.

[7] Y. Jin and R. Strom. Relational subscription middleware for
internet-scale publish-subscribe. In DEBS, 2003.


