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ABSTRACT 

Streaming query deployments make up a vital part of cloud oriented 

applications. They vary widely in their data, logic, and statefulness, 

and are typically executed in multi-tenant distributed environments 

with varying uptime SLAs. In order to achieve these SLAs, one of 

a number of proposed resiliency strategies is employed to protect 

against failure. This paper has introduced the first, comprehensive, 

cloud friendly comparison between different resiliency techniques 

for streaming queries. In this paper, we introduce models which 

capture the costs associated with different resiliency strategies, and 

through a series of experiments which implement and validate these 

models, show that (1) there is no single resiliency strategy which 

efficiently handles most streaming scenarios; (2) the optimization 

space is too complex for a person to employ a “rules of thumb” 

approach; and (3) there exists a clear generalization of periodic 

checkpointing that is worth considering in many cases. Finally, the 

models presented in this paper can be adapted to fit a wide variety 

of resiliency strategies, and likely have important consequences for 

cloud services beyond those that are obviously streaming. 

 INTRODUCTION 
Streaming query deployments make up a vital part of cloud oriented 

applications, like online advertising, online analytics, and internet 

of things scenarios. They vary widely in their data, logic, and 

statefulness, and are typically executed in multi-tenant distributed 

environments with varying uptime SLAs (i.e. how often query 

response time is impacted by failure). In order to achieve these 

SLAs, one of a number of proposed resiliency strategies is 

employed to protect against failure.  

Unfortunately, the choice of resiliency strategy is highly 

challenging, and scenario dependent. For instance, consider the 

system described in MillWheel [13]. This system periodically 

checkpoints the query state, and optionally allows users to 

implement caching, which is highly useful for scenarios like online 

advertising. In such scenarios, the event rate is small to moderate 

(e.g., tens of thousands of events per second), and there are a very 

large number of states (e.g., one for each browsing session) which 

are active for a short period of time, then typically expire after a 

long holding period. Rather than redundantly store states in RAM, 

states are cached in the streaming nodes for a period, then sent to a 

key-value store after some time, where they are written in replicated 

fashion to cheap storage, and typically expire unaccessed. As a 

result, the RAM needed for streaming nodes is small, and may be 

checkpointed and recovered cheaply.  

This design would, however, be untenable for online gaming, 

where the event rate is high (e.g., millions of events per second), 

with a large number of active users, and with little locality for a 

cache to leverage. The tolerance for recovery latency is very low, 

making it impossible to recover a failed node quickly enough. 

While many streaming resiliency strategies are discussed in the 

literature, along with some modeling work, the state of the art does 

not quantify the performance and cost tradeoffs across even basic 

strategies in a way which is actionable in today's cloud 

environments. For instance, prior efforts (e.g. [11]) do not consider 

uptime SLAs and resource reservation costs, leading to analyses 

useful for establishing some intuition for the differences between 

approaches, but not for selecting strategies in today’s datacenters.  

Lacking tools or frameworks sufficient to prescribe resiliency 

approaches, practitioners typically choose the technique which is 

easiest to implement, or in cases like MillWheel, build systems 

tailored to solve particular classes of problems, hoping that these 

systems will have high general applicability. 

This paper presents an analytical framework based on uptime SLAs 

and resource reservation, as well as detailed analyses of a number 
of resiliency designs for streaming systems. We show: 

 One size doesn’t fit all: There is no resiliency strategy which 

efficiently covers most of the streaming query space. Specific 

strategies can be vastly better compared to others (by orders 

of magnitude!), depending on scenario and environment 

characteristics, even when considering only realistic 

scenarios. While [11] presented similar results for a limited 

spectrum of strategies, we confirm that this holds across a 

much broader spectrum of approaches when considering 
SLAs and with a resource allocation style of provisioning. 

 No actionable “rules of thumb”: While some strategies are 

better than others for specific scenarios, the tradeoffs are too 

complex for useful “rules of thumb”. Models are needed to 
understand the efficacy of specific approaches for scenarios. 

 Informative models are tractable: Models are provided in this 

paper, and make the alternatives explicit and clear, and, 

surprisingly, only depend on a few scenario and infrastructure 

parameters. While our models are a major contribution, it is 

not necessary that readers understand them in order to use 

them, or understand the conclusions in this paper. 

 Our models are accurate: Using real data and a real streaming 

system running a real query, we show through our distributed 

resiliency emulator that the SLAs achieved in practice are 

typically within 1% of what our models predict. 

 These models are straightforward to develop: They can be 

adapted to describe many resiliency strategies: We provide the 

precise model modifications for modeling sharded/parallel 

streaming queries. We also sketch model modifications for 
handling distributed pipelines and Millwheel style caching.  

 We introduce active-active periodic checkpointing: While a 

generalization of periodic checkpointing, it is not discussed in 

the literature, likely because it is considered to be inferior to 

active-active on-demand checkpointing. We show that 
periodic checkpointing is a better strategy in most situations. 

Paper organization: Section 2 describes the modeled resiliency 

strategies. Section 3 describes our modeling framework, including 

our metrics and parameters, and our modeling assumptions. Section 
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4 provides models for 5 resiliency strategies. Section 5 validates the 

accuracy of our models using a distributed resiliency emulator and 

a real query on real data with a real streaming query processor. 

Section 6 evaluates the strategies, by applying our models with 

varying parameter settings. Section 7 describes extensions to our 

models which take into account other kinds of resources, and how 

those models could be applied in situations with sharding or 

caching. Section 8 gives an overview of related work. Section 9 

concludes the paper with lessons learned and future work.  

 RESILIENCY STRATEGIES 
This section gives an overview of the fundamental resiliency 

strategies considered in this paper. Note that these are foundational 

approaches, mostly described in the literature, and can be varied to 

create derivative solutions like the one used in MillWheel. In 

Section 7, we discuss these derivative strategies, and how the 

models in this paper can be applied. 

These foundational strategies are described visually in Figure 1, 

Figure 2, and Figure 3, which show the states that a typical 

streaming node goes through for different resiliency approaches. 

These figures will be referred to throughout this section. Note that 

initially, we do not consider sharded scenarios. We relax this 

restriction with precise model modifications in Section 7. 

In the figures below, nodes begin by recovering the state of the 

failed node which they are replacing. This is the case for all nodes 

except for nodes which initially start the query. Similarly, the 

lifetimes of almost all streaming nodes end with failure. 

Note that in all resiliency approaches described in this paper, we 

assume the existence of a resilient store, and further assume that all 

input is journaled in this store. Furthermore, for all cases, except 

one version of replay based (for explanatory purposes), we assume 

that all output must be delivered exactly once in the face of failure. 

 Replay Based 
These scenarios leverage knowledge of the query’s window size. 

For instance, in a 1 minute trailing average, the window size is 1 

minute. Note that such information isn’t always available, in which 

case these resiliency approaches are not possible. 

In the single node version, as described by the timeline in Figure 1, 

when the node fails, a new node is created which first consumes a 

window of input. During this time, the query falls further behind, 

so it subsequently enters a catchup phase until normal operation can 

resume. Note that one can either start consuming input from a point 

in time which guarantees no loss of output, or choose a moment in 

time a bit later which minimizes catch up time. 

In active-active replay, all nodes simultaneously run the query. 

When a copy fails, it recovers in the same manner as single node 

replay. The query is only down when all running copies go down. 

Active-active approaches are critical for meeting tough SLAs, but 

how many copies should be run for a given scenario and SLA? 

Note that for all active-active approaches, including replay based, 

we assume that there is a primary copy which is responsible for 

sending output. Part of handling failure is to seamlessly switch 

primaries from one copy to another. As a result, the cost of output 

transmission doesn’t vary significantly between strategies. 
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Figure 1: Replay Based Node Timeline 

Recover
Checkpoint

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Take
Checkpoint

Catch
Up

Normal
Operation

 

Figure 2: Periodic Checkpointing Based Timeline 
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Figure 3: On Demand Checkpointing Based Timeline 

 Periodic Checkpointing Based 
These solutions make use of some systems’ ability to checkpoint 

the state of a running query. As shown in Figure 2, the running 

query periodically checkpoints its state to a resilient store. Upon 

failure, the latest checkpoint is read and rehydrated on a new node, 

and the input is replayed from the time of the checkpoint. Note that 

for checkpointing based strategies, duplicate output is typically 

thrown away as part of catching up [5]. 

While we found no reference to the active-active version, it is a 

clear extension of the single node version, where the query is run 

on many nodes. One reserved copy periodically checkpoints. When 

a copy fails, a new copy is spun up as in the single node version. If 

the checkpointing node fails, during the subsequent catchup phase, 

all checkpoints are taken at the correct logical times according to 

the checkpointing period, as if the node wasn’t recovering. 

Checkpointing based solutions are typically chosen when either 

replay solutions aren’t possible, or where the checkpoint size is 

significantly smaller than the input needed to reproduce it, but how 

much smaller does the checkpoint need to be? Are there other 

important factors? 

 On-demand Checkpointing Based 
These are the solutions usually referred to in the literature as active-

active checkpointing. As shown in Figure 3, in this approach, 

multiple copies of the computation are run. When a node fails, 

another running node stops processing input and takes a 

checkpoint, which is used to rehydrate a new running copy. Note 

that this approach requires at least 2 running nodes. 

This approach never writes checkpoints to storage, checkpoints 

only when needed, and catchup times are less. However, an extra 

node is needed to jump-start a failed node (i.e., when a node goes 

down, two stop processing input), and if all running copies fail, the 
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state is lost. As we will see, in practice, this strategy is mostly 

inferior to active-active periodic checkpointing. 

 MODELING FOUNDATIONS 
In this section we formalize the metrics by which we evaluate 

resiliency approaches, and the parameters upon which they depend. 

We begin with a general discussion of the challenges of deciding 

on the metrics of interest, and conclude the section with a precise 

statement of the chosen metrics and parameters. 

 Modeling Objectives 
Typically, streaming queries are run on one or more nodes in a 

datacenter, and incur various costs, including: 

 CPU costs to run, recover, and checkpoint the query 

 Storage costs to resiliently journal the input and checkpoints 

 Networking costs to move input and checkpoints. 

 Memory costs associated with maintaining query state 

All of these costs are affected by the choice of resiliency strategy, 

whose goal is to meet a downtime SLA. This type of SLA allows 

the user to specify, for instance, the number of minutes per year 

during which the query is “down”. Down, in this context, means 

that the results are not being delivered in as timely of a fashion as 

they would if failure didn’t occur. For instance, if a query is 

catching up after failure and recovery, this is considered downtime 

until the query has completely caught up to the arriving input. 

In this paper, we specifically model NIC bandwidth costs as a 

proxy for overall network costs. This choice captures all network 

activity at the edges, regardless of internal topology, including 

network capacity to and from storage nodes, compute nodes, and 

ingress nodes. Our models capture the complexity present in 

modeling other resources, and can be varied to capture the other 

resource costs (see Section 7.1).  

By only considering NIC costs in the models presented and 

evaluated here, we will miss some phenomena. For instance, when 

states are hard to compute (i.e. high computational complexity), 

checkpointing is typically better than replay. Also, sometimes 

memory is a critical cost which can affect the choice of resiliency 

strategy, as was the case in MillWheel. Section 7 sketches how our 

models can be extended to analyze these cases. Note that making 

our models sensitive to these phenomena results in a more complex, 

but still tractable, optimization space, which strengthens our 

conclusion that an actual model is needed. 

In order to compute cost, we take a bandwidth reservation 

approach. More specifically, consider the network load profiles of 

compute nodes for the three types of resiliency approaches, shown 

in Figure 4. For all scenarios, each query on a node begins its life 

by recovering a previously failed query’s state. 

For replay, once recovery is complete, the load settles down to the 

same load that would exist without resiliency. This suggests that 

we must find enough bandwidth on the node to recover quickly 

enough to meet our SLA, but that we can significantly lower the 

bandwidth requirements once recovery is over, leaving room on the 

node for other work. 

For periodic checkpointing based approaches, there is one node 

which periodically checkpoints. For the single node version, if 

enough bandwidth isn’t available for either recovery or 

checkpointing, we will not be able to meet our SLA. Since 

increasing the bandwidth reservation of a node could be heavily 

disruptive to other jobs on the node, resulting in SLA failure for 

those jobs, we reserve enough capacity to accommodate recovery 

initially, and periodic checkpointing until failure, even though there 

are periods, after recovery and between checkpoints, where the 

network load is lower. This requirement that reservations only 

decrease over time is met for all reservation strategies. 

For active-active periodic checkpointing, since the checkpointing 

node is never used for output, it may fall behind without impacting 

the SLA, since other nodes, which aren’t checkpointing, are always 

up to date. Rather, the checkpointing node must keep up overall 

with a constant reservation for the average needed bandwidth, but 

may fall behind for periods of time. We therefore need to only 

reserve the average, rather than the peak, load. Note that some 

nodes will never need to checkpoint. These nodes have load profiles 

like the replay based approach, and we can similarly decrease their 

bandwidth reservation once recovery is over. 
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Figure 4: NIC Load for Compute Nodes 

For on-demand based approaches, after recovery is over, any node 

may, at any time, be used to start a new instance. The load is 

therefore characterized by sporadic heavy load associated with 

checkpointing. Like single node periodic checkpointing, we 

continuously reserve the peak checkpointing load needed to ensure 

that the SLA is met.  

With this bandwidth reservation approach in mind, the goal of our 
model is to answer two questions: 

1. How much bandwidth, compared to the input bandwidth, do I 
need to reserve initially to recover my query? 

2. How costly, in terms of reserved NIC bandwidth, is my 

resiliency approach compared to running the query non-
resiliently? 

Note that both of the costs mentioned above are in comparison to 

the cost of running the query non-resiliently. This is a deeply 

important, nonobvious facet of our modeling approach which 

greatly simplifies our modeling task. 

 Modeling Assumptions 
In order to simplify our analysis, we make certain assumptions: 

 All network load and other work associated with processing 

the query unresiliently is unvarying over time. As a result, 
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these models are useful for capturing “worst cases”. This 

assumption is deeply embedded in our approach and cannot be 

relaxed without deep changes in our models. 

 The output is small compared to the input and is, therefore, not 

part of the model. This assumption simplifies our presentation, 

and is almost always true for streaming queries. Output 

transmission could easily be added to our models. 

 Failure doesn’t occur during recovery. This is an assumption 

made to simplify the presentation of our models. In all cases, 

this is a second order effect, and only has small impact on the 

resulting costs. This assumption could be relaxed by extending 
the presented approaches. 

 Modeling Metrics and Parameters 
With the above two goals in mind, we introduce the following two 

metrics which will be computed for each resiliency option, given 
application and infrastructure parameters: 

 𝑅𝐹 = The recovery NIC bandwidth reservation needed to meet 

the SLA, as a factor of input bandwidth. The subscript refers 
to the unit (factor). 

 𝐶𝐹 = The cost, in terms of total reserved NIC bandwidth, as a 

factor of the NIC costs associated with running the query non-
resiliently (factor).  

These metrics are computed using these application parameters: 

 𝑊𝑇 = windows size, such as 10 minutes in a 10 minute trailing 

window (time, e.g. sec). 

 𝐶𝑆= Checkpoint size (size, e.g. bytes) 

 𝐼𝑅= Input rate (size/time) 

 𝑆𝐿𝐴 = Fraction of the time that the system response to input is 

unaffected by failure (ratio, e.g. .99999) 

We also have the following infrastructure parameters: 

 𝐹𝑇 = Mean time between failure for a single node (time) 

 𝐾𝐹 = Number of copies in replicated storage (factor) 

In addition, there are, for some resiliency strategies, the following 
tunable parameters, which we set as part of optimizing for cost: 

 𝐶𝑇 = Checkpoint period for periodic checkpointing (time) 

 𝑁𝐹 = Number of running copies (factor). This is either 
explicitly set, or varied as part of optimizing cost. 

Finally, there is, throughout the following analyses, the following 
computed value, which is computed from the above parameters: 

 𝑆𝑇 = 
𝐶𝑆

𝐼𝑅
–= The checkpoint transfer time assuming input rate 

bandwidth (time) 

 Computing 𝑪𝑭 
Figure 5 illustrates the network flows when computation isn’t 

resilient to failure. The NIC costs associated with these flows form 

the baseline with which all other approaches are compared. 

First, note that the data could initially be acquired by the ingress 

node with a network flow arriving at the node, although the data 

could also be born at this node. Also, there is a network flow 

transmitting the input to the compute node, as well as a network 

flow to each of the storage nodes on which a copy of the data will 

be stored. Note that there is only one path on the ingress node to all 

the storage nodes which store the data. This reflects our decision to 

capture the costs in common with all implementations of cloud 

storage. All implementations must push a copy to each of 𝑘 storage 

nodes, but whether internal network communication is reduced 

with interesting topologies and/or broadcast networks varies 

amongst implementations. These varying costs could easily be 

accounted for in all of our models for a particular storage 

implementation. Also, note that the storage nodes in our figure are 

logical, as a single copy of the data may actually be spread out over 

a very large number of nodes in a storage cluster. The aggregate 

NIC bandwidth is, however, insensitive to this, so we represent 

each of these copies as sent to a single node. 
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Figure 5: Network Flow Diagram With No Resiliency 

Associated with each network flow are NIC costs at either end (i.e., 

𝐶1), which, in this case, are symmetric. For some strategies, 

however, the reservations are not symmetric, and for this reason, 

we separately account for the costs at both ends. To compute the 

cost of all network flows, we calculate the expected total NIC 

reservation costs during a failure period, as a factor of the input 

rate. As a result, 𝐶1 = 𝐹𝑇 is used here, since there is an input rate 

sized NIC bandwidth reservation  for 𝐹𝑇 time units.  

When computing 𝐶𝐹, we will not include the cost of acquiring the 

data, since it is insensitive to the choice of resiliency strategy, and 

the data may be born on the node, in which case there are no 

network costs. As a result, the baseline cost, adding up all the 

network flow costs at both sender and receiver, is 2 ⋅ 𝐹𝑇 for the 

ingress node, 𝐹𝑇 for the compute node, and 𝑘 ⋅ 𝐹𝑇 for the storage 

nodes, or (𝑘 + 3) ⋅ 𝐹𝑇 in total. This will be used as the denominator 

in every cost calculation throughout the paper. 

 RESILIENCY MODELS 
We now describe five of our models. Specifically, we model the 

single node versions of replay and periodic checkpointing, and the 

active-active variants of replay, periodic checkpointing, and on-

demand checkpointing. 

 Single Node Replay 
There are two versions of single node replay. In the first, we assume 

that lost output is acceptable, and that the goal of recovery is to 

minimize downtime. This assumption is desirable for dashboards, 

where users are frequently uninterested in previous results (e.g. task 

manager in windows). We also provide an analysis where all output 

is computed. This is desirable when output is logged, or where 

visualizations provide the history of a reported metric.  

We begin our first analysis by deriving 𝑅𝐹. Note that we are trying 

to find the minimal setting for 𝑅𝐹 which meets our SLA over an 

arbitrarily long period of time. In particular, to exactly meet our 

SLA in the long run, each failure is allowed a downtime budget, 

which, on average, is used to fully recover when the query initially 

starts. In particular, that budget:  

𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) 

Observe that for each failure, the recovery time 𝑅𝑇 is: 

𝑅𝑇 =
𝑊𝑇
𝑅𝐹
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This can be seen when one considers that to recover, one must 

replay exactly a window’s worth of data. If the bandwidth 

reservation is double what is needed to process the input in real 

time, recovery can happen in half the window size period of time, 

and so on. We can now set 𝑅𝑇 = 𝐵𝑇, and we have: 

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) =
𝑊𝑇
𝑅𝐹
, 

𝑅𝐹 =
𝑊𝑇

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)
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Figure 6: Network Flow Diagram for Single Node Replay 

In computing 𝐶𝐹, first consider Figure 6, which shows the flows 

and costs associated with replay. First, note that cost 𝐶1 is the same 

as in the non-resilient case. We additionally have cost 𝐶2, which is 

associated with the replay flow. This cost is 𝑅𝑇 ⋅ 𝑅𝐹, minus the cost 

of the portion of replay which involved receiving data for the first 

time from the ingress node, or 𝑅𝑇. Resulting in:  

𝐶2 = 𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇 

Summing up all the costs: 

𝐶𝐹 =
2 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇) + (𝐾𝐹 + 3) ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

On the other hand, if we are not allowed to miss output, then 

recovery time must start reading input starting from a full window 

before failure occurred. Once a full window of data has been read, 

we have fallen behind by the time it took to transmit that window’s 

worth of data. Once we have caught up by that amount, we have 

further fallen behind by a smaller amount, and so on. This leads to 

the following infinite series: 

𝑅𝑇 =
𝑊𝑇
𝑅𝐹
+
𝑊𝑇

𝑅𝐹
2 +

𝑊𝑇

𝑅𝐹
3 +⋯ 

Note that, for convenience, we will frequently substitute: 

𝑈 =
1

𝑅𝐹
 

We now have the geometric series: 

𝑅𝑇 = 𝑊𝑇 ⋅ 𝑈 ⋅∑𝑈𝑖
∞

𝑖=0

, 𝑈 < 0 

Using the closed form for the series, we get: 

𝑅𝑇 =
𝑊𝑇 ⋅ 𝑈

(1 − 𝑈)
= 𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) 

𝑈 =
𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)
 

𝑅𝐹 =
𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)
 

The total cost is more straightforward to calculate, as 𝐶2 is just the 

cost of reading a window’s worth of data. Thus: 

𝐶𝐹 =
2 ⋅ 𝑊𝑇 + (𝐾𝐹 + 3) ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

 Single Node Periodic Checkpointing 
In this resiliency approach, checkpoints are taken periodically. 

Both the downtime experienced during checkpointing, as well as 

the downtime experienced during recovery are charged against the 

downtime budget.  

We start with the downtime experienced during checkpointing: 

Every failure period, 
𝐹𝑇

𝐶𝑇
 checkpoints are taken, each of which takes 

𝑆𝑇 time units to transfer over the network, assuming input rate 

bandwidth. In addition, there is a catch up period after each 

checkpoint is taken, which is the time it takes for the output to be 

produced in as timely a fashion as if a checkpoint had never been 

taken. Clearly, the amount of time it takes for the checkpoint to be 

transferred is 𝑈 ⋅ 𝑆𝑇.  

The catch up time is a bit trickier: during the time it took to take the 

checkpoint, the input fell behind by 𝑈 ⋅ 𝑆𝑇 time units. It takes 𝑈 ⋅
𝑈 ⋅ 𝑆𝑇 time to replay this input, at the end of which, we are now 

behind by 𝑈 ⋅ 𝑈 ⋅ 𝑈 ⋅ 𝑆𝑇 time units. In other words, the catch up 

time can be expressed with the following geometric series: 𝑈 ⋅ 𝑈 ⋅

𝑆𝑇 ⋅ ∑ 𝑈𝑖∞
𝑖=0 . Since the only way we can catch up is if 𝑈 < 1, the 

closed form for the series can be used, and the downtime cost of 

checkpointing for each failure period, 𝐵1𝑇,  can be written as: 

𝐵1𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

 ) ⋅
𝐹𝑇
𝐶𝑇

 

Calculating the downtime associated with recovery is a bit more 

difficult. Similar to taking a checkpoint, there are two phases: a 

checkpoint recovery period, and a catch up period. Unlike taking a 

checkpoint, the catch up period depends upon how long ago a 

checkpoint was taken. 
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Figure 7: Periodic Checkpointing Recovery Timeline 

Consider Figure 7, which shows the timeline for checkpointing and 

recovery. Observe that on the far left, the last completed checkpoint 

begins. 𝑡 time units after the checkpoint is successfully transferred, 

failure occurs. At this time, checkpoint recovery begins, and the 

checkpoint is transferred. Once the transfer is complete, catch up 

commences. 

The time to recover the checkpoint after recovery begins is clearly 

𝑈 ⋅ 𝑆. The recovery time has two components. The first is a “fixed” 

component that doesn’t vary with the amount of time since the last 

checkpoint was successfully transferred. Another way to look at 

this is that this is the catchup time if 𝑡 = 0. In this case, the total 

amount of input which needs to be replayed is the time it took to 

transfer the checkpoint when it was taken, plus the time it took to 

recover the checkpoint after failure. Thus the total amount of fixed 

input time which needs to be recovered is 2 ⋅ 𝑈 ⋅ 𝑆𝑇. Note that we 

still have the infinite sum as we replay, so the total budget used for 

the fixed replay cost is 
2⋅𝑈⋅𝑈⋅𝑆𝑇

1−𝑈
. In addition to this, there is a variable 
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replay amount, 𝑡, which varies from 0 to 𝐶𝑇. We account for this 

variable cost by doing an expected value calculation for 𝑡. 
Therefore the total replay cost 𝐵2𝑅𝑒𝑝𝑙𝑎𝑦𝑇, is: 

𝐵2𝑅𝑒𝑝𝑙𝑎𝑦𝑇 = 𝑈 ⋅ (
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+ 
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
) 

It follows directly that the total recovery cost, 𝐵2𝑇, which includes 

both the cost of restoring the checkpoint, and the replay cost, is: 

𝐵2𝑇 = 𝑈 ⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+ 
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
) 

The total cost per failure, 𝐵𝑇, is therefore: 

𝐵𝑇 = 𝐵1𝑇 + 𝐵2𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

 ) ⋅
𝐹𝑇
𝐶𝑇
+ 𝑈

⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+ 
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
) 

Note that really we are interested in maximizing 𝑈, which is 

equivalent to solving for 𝑈 when the recovery budget per failure 

equals the maximum allowable downtime per failure, or: 

(1 − 𝑆𝐿𝐴) ⋅ 𝐹𝑇 = 𝐵𝑇 

 

Throughout our modeling efforts, we are presented with such 

equations, and while sometimes it is possible to solve for 𝑈 

analytically, in general, we take a numerical approach. For instance, 

in this case, we find the zero for: 

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅ 𝐹𝑇 

Since 𝐹(𝑈) is monotonically increasing, 0 < 𝑈 < 1 , 𝐹(0) < 0, 

and 𝑓(1) is an asymptote at infinity, we simply do a binary search 

between 0 and 1, avoiding any potential instability issues in a 

technique like Newton’s method. Note, though, that we need to find 

the zero in the above equation for a setting of 𝐶𝑇 which optimizes 

cost. The details of the numerical approach taken to solve this 

problem are described in Section 4.6. It is worth pointing out, here 

that this numerical problem is solved very efficiently, and with no 

numerical stability issues. 
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Storage1

StorageK

C1
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Figure 8: Network Flow Diagram for Single Node Periodic 

Checkpointing 

Once we determine 𝑈, we can compute 𝑅𝐹: 

𝑅𝐹 =
1

𝑈
 

In computing 𝐶𝐹, first consider Figure 8, which shows the flows 

and costs associated with single node periodic checkpointing. First, 

note that cost 𝐶1 is the same as in the non-resilient case, incurring 

a cost of:  

(𝐾𝐹 + 3) ⋅ 𝐹𝑇 

Determining 𝐶2, the network costs associated with recovery, is 

similarly straightforward, as it includes the cost of sending or 

receiving a checkpoint, and sending or receiving, on average, half 

the checkpointing period:  

𝐶2 =  𝑆𝑇 +
𝐶𝑇
2

 

There are two NICs where 𝐶2 cost is incurred, which we will 

elaborate on further. 

Note that on the checkpointing edge, 𝐶4/𝐶3, the network 

reservation on the compute node, and on each storage node, are 

different. This is due to our assumption that bandwidth reservations 

on compute nodes are only allowed to decrease over time, as 

increasing a reservation may not always be possible without 

significant disruption of other activity. As a result, not all reserved 

capacity is actually consumed. On the other hand, storage systems 

are extremely effective at spreading out load, making is possible to 

easily adjust to increasing and decreasing bandwidth requirements. 

As a result, 𝐶1 + 𝐶4 + 𝐶2 = 𝑅𝐹 ⋅ 𝐹𝑇.  

𝐶3, on the other hand, is the actual cost of checkpointing, which, 

similar to active-active checkpointing, is: 

𝐶3 =
𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

 

We are now ready to write the total cost: 

𝐶𝐹 =
(𝐾𝐹 + 2) ⋅ 𝐹𝑇 + (𝑐1 + 𝑐4 + 𝑐2) + 𝑐2 + 𝐾𝐹 ⋅ 𝐶3

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

=
(𝐾𝐹 + 2 + 𝑅𝐹) ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 

 

 

 Active-Active Periodic Checkpointing 
Recall that with this resiliency approach, multiple copies of the 

streaming computation are running, and one of these copies is 

reserved for periodic checkpointing. When one of the copies goes 

down, recovery from the last successful checkpoint is initiated. As 

long as at least one non-checkpointing copy remains, there is no 

downtime. If, after a time, all copies go down, the remaining 

recovery time is charged against the SLA budget for that failure. 

We begin our analysis by describing our failure model for nodes 

used in active-active approaches. Specifically, assume that the 

distribution for the amount of time it takes for a node to fail is 

captured by the exponential distribution [22]. We determine the 

resiliency cost associated with all running copies failing before 

recovery is complete, as follows: 

Let the random variables 𝑋𝑖 = the time for node 𝑖 to fail given 𝜆 =
1

𝐹𝑇
. The PDF and CDF for 𝑥𝑖 , 𝑓(𝑡) and 𝐹(𝑡) respectively, are: 

𝑓(𝑡) = 𝑃(𝑋𝑖 = 𝑡) = 𝜆𝑒
−𝜆𝑡 

𝐹(𝑡) = 𝑃(𝑋𝑖 ≤ 𝑡) =  1 − 𝑒
−𝜆𝑡 
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Let 𝑌 = the time for the 𝑘 = 𝑁𝐹 − 2 remaining nodes to fail. The 

PDF and CDF for 𝑌, 𝑔(𝑡) and 𝐺(𝑡) respectively, are: 

𝐺(𝑡) = 𝑃(𝑌 ≤ 𝑡) =  ∏𝑃(𝑋𝑖 ≤ 𝑡) =

𝑘

𝑖=1

(1 − 𝑒−𝜆𝑡)𝑘 

𝑔(𝑡) =  
𝑑(𝐺(𝑡))

𝑑𝑡
=
𝑑((1 − 𝑒−𝜆𝑡)𝑘)

𝑑𝑡
 

Each time a node fails, its state must by recovered and the node 

must be caught up to the latest input. If all other nodes fail before 

recovery is complete, then the user will experience downtime, 

which will be charged against the downtime budget. 

We now consider the impact to our resiliency budget in 3 cases. In 

all these cases, t is the time until all running nodes fail after one 

begins recovery. Recovery involves both a fixed sized cost, which 

includes the time to recover the checkpoint, and an input catch up 

cost which is twice the time it takes to take a checkpoint (time to 

take the checkpoint and time to restore the checkpoint), plus an 

additional variable sized input catch up cost, which depends on how 

far back the last checkpoint completed.  

4.3.1 Case 1: 𝑡 < 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
) 

In this case, failure occurs before the fixed portion of the recovery 

cost is complete. This includes the time to restore a checkpoint of 

time length 𝑆𝑇, plus the time length of input which arrived while 

the used checkpoint was taken (i.e. 𝑈 ⋅ 𝑆𝑇), plus an equal amount 

of input which arrived while the checkpoint was restored.  

Consider a variable 0 < 𝑝 < 𝐶𝑇, which represents, at the time of 

initial failure, the amount of time which passed since the last 
checkpoint completed. For a given t, the budget used is: 

𝑏1𝑇(𝑡) = ∫
𝑈 ⋅ (𝑆𝑇 + (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅ ∑ 𝑈𝑖∞

𝑖=0 ) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝

= ∫
𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
𝑝

1 − 𝑈
) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝 

Note that in the above, 𝑈 ⋅ 𝑆𝑇 is the portion of recovery associated 

with rehydrating the checkpoint, while 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅
∑ 𝑈𝑖∞
𝑖=0  is the time needed to catch up, depending on how long it’s 

been since the last checkpoint completed. The 2 ⋅ 𝑈2 ⋅ 𝑆𝑇 portion 

of this reflects the time to catch up associated with both taking and 

restoring the checkpoint. 

Integrating over the relevant times for this case, the overall impact 
on our recovery budget is: 

𝐵1𝑇 = ∫ 𝑔(𝑡) ⋅ 𝑏1𝑇(𝑡) ⋅ 𝑑𝑡
𝑈⋅(𝑆𝑇+

2⋅𝑈⋅𝑆𝑇
1−𝑈

)

0

 

4.3.2 Case 2:  

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

+ CT ⋅∑Ui)

∞

i=0

 

Or equivalently:  

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ ST +
U ⋅ (2 ⋅ U ⋅ ST + CT)

1 − U
 

In this case, failure happens after all fixed recovery costs, but we 

cannot conclude that recovery completes in all cases before total 

failure occurs. For each value of 𝑡 in this range, there are some sub-

cases where total failure occurs before catch-up is complete, which 

incurs a cost against our resiliency budget, but there are also some 

sub-cases where total failure occurs after catch-up is complete, 

incurring no penalty.  

In particular, in the above upper bound, 𝑈 ⋅ 𝑆𝑇 represents the time 

to rehydrate the checkpoint, while the second term, 
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈
, 

represents the portion of the recovery time to catch-up, by as much 

as 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝐶𝑇) after checkpoint rehydration is complete. 

Consider a variable 𝑡𝑝 = 𝑡 − 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
), which represents 

how much time we had after the fixed portion of the recovery, to 

catch up before total failure. Furthermore, consider a scaled version 

of 𝑝, called 𝑝𝑐, which is the amount of variable catch-up time 

needed given a particular value of 𝑝. Note that: 

𝑝𝑐 =
𝑈 ⋅ 𝑝

1 − 𝑈
 

Consider Figure 9, which illustrates the entire range of possibilities 

for the current case. For each time 𝑡𝑝, we have enumerated the 

space of possibilities, which is to say, that 𝑝 could range anywhere 

from 0 to 𝐶𝑇, resulting in: 

0 ≤ 𝑝𝑐 ≤
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

 

Now consider the diagonal where 𝑡𝑝 = 𝑝𝑐. This is the case where 

the new node exactly catches up when the last running node fails, 

resulting in 0 downtime. For the lower right triangle, the new node 

has been fully caught up before the other nodes fail, also resulting 

in 0 downtime. There are also contour lines, parallel to and above 

the diagonal, which represent constant and increasing amounts of 

time between catch-up and failure. We now define a new variable 

𝑥 = 𝑝𝑐 − 𝑡𝑝. In order to calculate the contribution of these 

scenarios to the cost of resiliency, we calculate: 

𝐵2𝑇 = ∫ 𝑥 ⋅ 𝑃(𝑋 = 𝑥)

𝑈⋅𝐶𝑇
1−𝑈

0

𝑑𝑥 

0

0 U · CT

1 - U

U · CT

1 - U

tp

pc

 
Figure 9: Case 2 variables and integration limits 

In other words, we sum the various cost contour lines, where each 

contour is multiplied by the likelihood of occurrence for that 

contour. In order to calculate the likelihood, we integrate across the 

relevant range of 𝑡𝑝, summing the probabilities of all points along 

the contour line. We are aided here by the assumption that when 

failure occurs, there is a uniform probability distribution (between 

0 and 𝐶𝑇) for how far back the last checkpoint completed. Thus: 

𝑃(𝑋 = 𝑥) =  ∫ 𝑔 (𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (
1

(
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

)
)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝 
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= ∫

(

 
 
𝑔(𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

 
 

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝 

A few notes: 

 The 𝑡𝑝 in 𝑔 (𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
)) comes from the outer 

integral. We add the fixed costs of recovery to t because we 

are picking probabilities for total failure times which occur 

after these costs are incurred (i.e. we are converting from 𝑡𝑝 to 

𝑡). We divide the resulting probability to spread it out 

uniformly amongst all the cases for that total failure time. 

 The upper bound on the definite integral decreases as 𝑥 

increases because we only integrate the portion of the contour 

line below 𝑝𝑐 =
𝑈⋅𝐶𝑇

1−𝑈
 . As we increase 𝑥, the portion of the 

contour line we integrate over therefore gets shorter. 

Thus, the total contribution of this case to our resiliency budget is: 

𝐵2𝑇 = ∫ 𝑥 ⋅

(

 
 
∫

(

 
 
𝑔(𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

 
 

𝑈⋅𝐶𝑇
1−𝑈

−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

)

 
 
⋅ 𝑑𝑥

𝑈⋅𝐶𝑇
1−𝑈

0

 

4.3.3 Case 3: 𝑡 > 𝑈 ⋅ 𝑆𝑇 +
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈
 

In this case failure is guaranteed to occur after recovery is complete, 
and there is no impact on our resiliency budget. Therefore: 

𝐵3𝑇 = 0 

Considering all cases, the overall resiliency cost per failure is: 

𝐵𝑇 = 𝐵1𝑇 + 𝐵2𝑇 + 𝐵3𝑇 

Our goal is to solve for 𝑈 in: 

(1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹
= 𝐵𝑇 

First, note the use of 𝑁𝐹 in calculating our per failure budget. Our 

budget is adjusted thus because failure is more common by a factor 

of 𝑁𝐹, reducing the per failure budget. As in the single node 

periodic checkpointing case, we take a numerical approach. 

Specifically, we find the zero for: 

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹

 

Again, since 𝐹(𝑈) is monotonically increasing, 0 < 𝑈 < 1 , 
𝐹(0) < 0, and 𝑓(1) is an asymptote at infinity, we simply do a 

binary search between 0 and 1, avoiding any potential instability 

issues in a technique like Newton’s method. Note that in practice, 

we must solve the above equation with values chosen for 𝐶𝑇 and 

𝑁𝐹 which optimize cost. Since 𝑁𝐹 has a small number of finite 

values worth considering, we optimize cost for each distinct value 

of 𝑁𝐹, each of these optimization problems are solved in a manner 

similar to single node checkpointing, with the specific numerical 

approach described in Section 4.6. 

Once we determine 𝑈, we can compute 𝑅𝐹: 

𝑅𝐹 =
1

𝑈
 

In computing 𝐶𝐹, first consider Figure 10, which shows the flows 

and costs associated with active-active periodic checkpointing. 

First, note that cost 𝐶1 is the same as in the non-resilient case, 

although there are additional flows with these costs due to the 
active-active nature of this solution, incurring costs of:  

(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 

Ingress

Compute1

ComputeN

Storage1

StorageK

C1

C1C1

C1

C1

C1

C1

...

...

C2

C2

C2

C2

C3

C3

C3  

Figure 10: Network Flow Diagram for Active-Active Periodic 

Checkpointing 

We additionally have cost 𝐶2, which is associated with the recovery 

flow, and occurs, on average, 𝑁𝐹 times during 𝐹𝑇. This flow 

consists of sending and receiving a checkpoint, followed by 

catching up to the point of failure by replaying stored input. Since 

the expected time since the last checkpoint is 𝐶𝑇/2, the total costs 

associated with 𝐶𝑇 are: 

𝑁𝐹 ⋅ (2 ⋅ (𝑆𝑇 +
𝐶𝑇
2
)) 

𝐶3, the network costs of taking a checkpoint, like 𝐶2, involves 

sending and receiving checkpoints, except that there is no replay 

component, it occurs 𝐹𝑇/𝐶𝑇 times during the failure interval, and is 

sent to 𝐾𝐹 storage nodes, leading to a cost of: 

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

 

Summing all the components of 𝐶𝐹 leads us to the following: 

𝐶𝐹 =
(𝐾𝐹 + 1+ 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 𝑁𝐹 ⋅ 2 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) +

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

 Active-Active On-Demand 

Checkpointing 

4.4.1 Analysis I 
In this approach, during normal operation, the query is redundantly 

executed 𝑁𝐹 times. When a copy goes down, one of the remaining 

copies is used to spin up a new copy while all other copies continue. 

The new copy is created as in the previous on demand 

checkpointing scenario. This results in reduced time to recover, 

compared to periodic checkpointing, and eliminates the overhead 

associated with periodic checkpointing. Note, however, that there 

is one less redundant node available during recovery since one node 

is reserved for spinning up another copy. This makes it more likely 

that all nodes will go down before the first node recovers, incurring 

more frequent charges to the SLA budget.  

When a node fails, another node takes a checkpoint, and sends the 

checkpoint to a new node, which rehydrates the checkpoint. Since 

all operations can be pipelined, the time taken to simultaneously 

transfer and receive the checkpoint is 𝑈 ⋅ 𝑆𝑇. During this time, both 

nodes will fall behind and will need to catch up. As a result, the 

total amount of recovery time is: 

𝑅𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

) 

Similar to active-active with replay, given the recovery time, the 

impact on the resiliency budget is: 
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𝐵𝑇 = ∫ 𝑔(𝑡) ⋅ (𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

) − 𝑡) ⋅ 𝑑𝑡
𝑈⋅(𝑆𝑇+

𝑈⋅𝑆𝑇
1−𝑈

)

0

 

One disadvantage of this approach is that the function 𝑔(𝑡) is 

calculated based upon 𝑁𝐹 − 2 nodes that must all fail instead of 

𝑁𝐹 − 1, as used in other active-active approaches. 

𝑈 may now be numerically calculated, as in other approaches, and: 

𝑅𝐹 =
1

𝑈
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Figure 11: Network Flow Diagram for Active-Active On-

Demand Checkpointing 

In computing 𝐶𝐹, first consider Figure 11, which shows the flows 

and costs associated with active-active on-demand checkpointing. 

Note that all networking costs for compute nodes are captured by 

making use of 𝑅𝐹. To this we add the remaining 𝐶1 costs, yielding:  

𝐶𝐹 =
(𝐾𝐹 + 1 + 𝑁𝐹) ⋅ 𝐹𝑇 +𝑁𝐹 ⋅ 𝑅𝐹 ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

4.4.2 Analysis II 
Note that the first analysis assumes that neither the recovering node 

nor the recovered node fail during recovery. This avoids the 

catastrophic case that all nodes fail during recovery, which results 

in a complete loss of state. Therefore, in this analysis, we determine 

the level of provisioning required to ensure that the expected time 

for complete failure is equal to some controlled amount (e.g. 10 

years). 

Similar to previous cases, we use the same definitions for 𝐺(𝑡) and 

𝑔(𝑡), since we are interested in the likelihood that all nodes fail 

within the recovery period. In other words, we are interest in 

𝐺(𝑅𝑇). Note that we know 𝑅𝑇 from Analysis I: 

𝐺(𝑅𝑇) = (1 − 𝑒
−
𝑈⋅(𝑆𝑇+

𝑈⋅𝑆𝑇
1−𝑈

)

𝐹𝑇 )

𝑘

 

Therefore, for each failure, there is a 𝐺(𝑅𝑇) chance that all nodes 

will fail before recovery of this failure is complete. Considering 

each failure as a Bernoulli trial, we can use the negative binomial 

distribution, which is the discrete probability distribution for the 

number of successes in a sequence of independent and identically 

distributed Bernoulli trials before 𝑟 failures occur. Using 𝑟 = 1, we 

use the formula for the expected value of the negative binomial 

distribution and get the expected number of failures before total 

failure occurs 𝑇𝑁: 

𝑇𝑁(𝑈) =  
𝑝𝑟

1 − 𝑝
=

1 − 𝐺(𝑅𝑇)

1 − (1 − 𝐺(𝑅𝑇))
=
1 − 𝐺(𝑅𝑇)

𝐺(𝑅𝑇)
 

Note that since the number of failures in a given period time 

increases linearly with 𝑘, the expected time until total failure 𝑇𝑇 is: 

𝑇𝑇(𝑈) =
𝑇𝑁 ⋅ 𝐹𝑇
𝑘

 

We can now determine U by setting 𝑇𝑇 to the desired expected time 

till total failure, and, as in other cases, numerically find the zero of 

the resulting equation. 

Unfortunately, for this model, the expected value is not sufficient 

to be useful. When 𝑟 = 1, the negative binomial distribution has 

very high variance. For instance, 0 successes is frequently within 1 

standard deviation of the mean, even when the mean is large. 

What is frequently of more interest is the likelihood that the first 

failure occurs within the first 𝐶 successes: 

𝐹𝑎𝑖𝑙(𝑈, 𝐶) = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝐷𝐹(𝑈, 𝐶) 
In other words, for any particular level of overprovisioning, the 

above function computes the likelihood that the first failure occurs 

before the 𝐶th success. We can now choose a probability of failure 

𝑓𝑎𝑖𝑙𝑝 within some period of time 𝐶 (e.g. .00001% within 5 years), 

and then numerically find the zero of: 

𝐹(𝑈) =  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝐷𝐹(𝑈, 𝐶) − 𝑓𝑎𝑖𝑙𝑝 

Note that we must choose the minimum 𝑈 from analyses I and II: 

𝑈 = min(𝑈𝐼 , 𝑈𝐼𝐼) 

Other techniques don't require a similar analysis since they rely on 

persistent storage, which has very high data durability, to recover 

state. 

 Active-Active Replay 
In this strategy, each time a node fails, its state must by recovered 

by replaying a window of data. If all other nodes fail before the first 

failed node recovers, then the user will experience downtime, 

which will be charged against the downtime budget.  

The analysis presented here assumes output may be lost during 

downtime, similar to the first analysis in Section 4.1. A slightly 

more complex analysis may be done to disallow the loss of output 

if desired. 

Using the recovery time 𝑅𝑇, and the function g(t) from Section 4.3, 

we can calculate, for any number of replicas, the expected time 

charged per failure against the SLA, called 𝐵𝑇: 

𝐵𝑇 = ∫ (𝑅𝑇 − 𝑡) ⋅ 𝑔(𝑡)𝑑𝑡
𝑅𝑇

0

 

Note that when using replay as a strategy, and the window size is 

𝑊𝑇: 

𝑅𝑇 = 𝑊𝑇 ⋅ 𝑈 

Therefore: 

𝐵𝑇 = ∫ (𝑊𝑇 ⋅ 𝑈 − 𝑡) ⋅ 𝑔(𝑡)𝑑𝑡
𝑅𝑇

0

 

 

Similar to active-active periodic checkpointing, our goal is to solve 

for 𝑈 in: 

(1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹
= 𝐵𝑇 

Similarly, we find the zero for: 
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𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹

 

 

Again, we use a numerical technique to solve for 𝑈. This becomes 

particularly critical for 𝑁𝐹 > 2, where solving directly for 𝑈 is very 

challenging. Unlike the periodic checkpointing case, there is no 

asymptote at 1, although 𝑓(𝑈) is still monotonically increasing and 

guaranteed to be negative at 0. Therefore as long as we do our 

binary search in the range of 0 to 1, we will still find the correct 

answer in all cases. Note that technically, since we are allowed to 

miss output, very permissive SLAs allow 𝑅𝐹 greater than 1, 

although, in practice, we don’t exploit this in our implementation 

of this resiliency model, placing an upper bound of 1 on 𝑅𝐹. 

Note that this approach generalizes to any number of actives, 

although a tool like Mathematica is, in practice, needed to derive 

𝐵𝑇. 

Once we determine 𝑈, we can compute 𝑅𝐹: 

𝑅𝐹 =
1

𝑈
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Figure 12: Network Flow Diagram for Active-Active Replay 

To compute 𝐶𝐹, consider Figure 12, which shows the flows and 

costs associated with active-active with replay. First, note that cost 

𝐶1 is the same as in active-active with periodic checkpointing: 

(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇. 

The replay costs (i.e. 𝐶2) are clearly similar to the costs associated 

with single node replay, except that replay is more common. More 

specifically, on average, it occurs 𝑁𝐹 times every 𝐹𝑇, incurring a 

cost of: 

2 ⋅ 𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇) 

Combining these components allows us to conclude: 

𝐶𝐹 =
(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 2 ⋅ 𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇)

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

 Numerical Approaches 
We now describe, in more detail, the numerical techniques used to 

find zeros of functions, needed to compute 𝑅𝐹 in many cases, and 

also the numerical techniques used to optimize cost for solutions 

which employ periodic checkpointing. 

4.6.1 Computing 𝑹𝑭 
All models presented in this paper, except for single node replay, 

compute 𝑅𝐹 by finding the zero for some 𝐹(𝑈) where 𝑈 =
1

𝑅𝐹
. 

More specifically, these functions have the form: 

𝐹(𝑈) = 𝐶(𝑈) − 𝐵𝑆𝐿𝐴 

where 𝐶(𝑈) is the resiliency cost as a function of 𝑈, and 𝐵𝑆𝐿𝐴 is the 

allotted downtime budget for a particular 𝑆𝐿𝐴. 

For all cases involving checkpointing, 𝐶(𝑈) has the desirable 

property that it is 0 for 𝑈 = 0, since infinite bandwidth means no 

budget is actually used to checkpoint or recover, and is ∞ at 𝑈 = 1, 

since without extra budget, catchup is not possible. Furthermore, it 

is clear that 𝐶(𝑈) increases monotonically with 𝑈 since more 

bandwidth means less resiliency cost. These properties allow us, for 

any particular setting of parameters, to perform a binary search for 

the zero in 𝐹(𝑈) without running into stability issues. 

For replay based solutions, since we are not requiring that all output 

be produced, there is no asymptote at 𝑈 = 1. Consider the case 

where the resiliency budget is so lax, that even if we replay from 

current input at the time the node comes up, we still have unused 

resiliency budget. Technically, we could, in this case, use 

bandwidth lower than the input rate. Note that 𝐶(𝑈) goes to ∞ as 𝑈 

goes to infinity. So we can still perform a binary search once we 

find a value of 𝑈 s.t. 𝐹(𝑈) > 0. We can then perform a binary 

search as in the previous case. Finding such a value isn’t difficult 

since 𝐶(𝑈) and 𝐹(𝑈) still both monotonically increase with 𝑈. 

4.6.2 Optimizing 𝑪𝑭 
For both single node and active-active periodic checkpointing, in 

computing 𝐶𝐹, we need to determine the setting for checkpointing 

frequency (i.e. 𝐶𝑇), which optimizes 𝐶𝐹. Fortunately 𝐶𝐹(𝐶𝑇) has a 

straightforward shape in both cases, which allows us to approach 

this in a straightforward manner. 

Recall that the function for 𝐶𝐹 for single node and active-active 

periodic checkpointing are, respectively: 

𝐶𝐹 =
(𝐾𝐹 + 3+ 𝑅𝐹) ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 

𝐶𝐹 =
(𝐾𝐹 + 1+ 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 𝑁𝐹 ⋅ 2 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) +

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇
 

Rewriting these functions in terms of values which depend on 𝐶𝑇, 

they are, respectively: 

𝐶𝐹 = 𝑎1 + 𝑎2𝑅𝐹 + 𝑎3𝐶𝑇 +
𝑎4
𝐶𝑇

 

𝐶𝐹 = 𝑏1 + 𝑏2𝐶𝑇 +
𝑏3
𝐶𝑇

 

where 𝑎1. . 𝑎4, 𝑏1. . 𝑏3 are positive constants 

Considering active-active first, it is not hard to see that this curve 

has a single minimum, which is approached, as 𝐶𝑇 increases, for as 

along as 
𝑏3

𝐶𝑇
 reduces faster than 𝑏2𝐶𝑇 increases resulting in a graph 

like the one shown in Figure 13. 

Such minima can be easily found using an approach similar to 

binary search, over a region that’s known to contain the minima. 

One simply samples two equidistant points in the middle, and 

removes either the leftmost or rightmost third, ensuring that the 
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resulting region still contains the minimum. Like binary search, this 

approach doesn’t suffer from numerical stability issues. 

 

Figure 13: Plot of 𝒇(𝒙) = 𝒙 +
𝟏

𝒙
 

For single node periodic checkpointing, the shape of 𝑅𝐹 as a 

function of 𝐶𝑇 is very similar to Figure 13. Initially, there is 

significant savings in transmitting checkpoints less frequently. 

Eventually, though, the added cost of replay dominates the benefit 

of infrequent checkpointing, leading to an optimal setting for 𝐶𝑇. 

𝐶𝐹, for this case, ends up being the sum of two functions with 

monotonically increasing derivative, where both derivatives start 

negative and become positive. As a result, there can be only one 

point where the sum of these two derivatives is 0, where the 

minimum cost occurs. As a result, the overall shape of the cost 

function is similar to Figure 13, and the same technique may be 

used for optimizing cost. 

 MODEL VALIDATION 
This section validates the accuracy of the models presented in this 

paper by comparing the predicted results of applying the model to 

actual results achieved using a distributed systems emulator that 

runs an actual streaming query using a real streaming data 

processor over real advertising data. By executing a real query with 

real checkpoints, these experiments also show the effect of 

dropping the first assumption in Section 3.2 with respect to 

checkpoint size, as well as dropping the third assumption of no 

failures during recovery. We show that our models achieve an 

actual SLA typically within 1% of the target. 

 

 The Shrink Emulator 
In order to evaluate our models, we built a distributed system 

emulator which executes a real query over real data using the Trill 

streaming query processor [20]. The input to an emulator run 

consists of the input to our models, except for the 𝑆𝐿𝐴, as well as 

the output of applying our models, including the bandwidth 

overprovisioning factor 𝑅𝐹, and the optimized checkpointing 

frequency 𝐶𝑇 where appropriate. 

Our system is an emulator in the sense that we have a virtual global 

clock which ingresses data into the streaming engine/s in 

accordance with an input bandwidth rate. Failures for all running 

copies are also randomly generated and scheduled according to an 

exponential distribution with the mean time to failure 𝐹𝑇. Where 

appropriate, actual query checkpoints are taken in Trill according 

to the schedule specified by 𝐶𝑇. 

Upon both checkpointing and failure, 𝑅𝐹 is used to determine the 

length of time until normal processing resumes based on both the 

actual last successful checkpoint (size and virtual time), and the 

amount of input needed to be processed in order to catch up. The 

observed virtual downtime is then measured for each run, and 

compared to the SLA target used to generate 𝑅𝐹 and 𝐶𝑇. 

In other words, we are emulating the network, and removing CPU 

and storage as potential bottlenecks, since the models presented so 

far do not consider these. Note that Section 7.1 contains a complete 

description of how the models presented in this paper can easily be 

extended to handle these other resources. 

 Experiments 
These experiments consist of a series of paired model and emulator 

runs. For each run, parameter settings were chosen, including an 

uptime SLA, and a checkpoint size, which was measured in Trill 

using the tested query on the first part of the dataset. These 

parameter settings were then run through each of our models, which 

in turn compute 𝑅𝐹 and, in some cases, 𝐶𝑇. All of these parameters 

(except the uptime SLA), were then used to emulate each strategy. 

The actual downtime was then measured, and compared to the 

target SLA fed to our models.  

The data were a random subset of <UserID, Search> pairs from 

Bing, spanning about a 2 weeks. The query was a grouped count 

aggregate, where the grouping field was (𝑈𝑠𝑒𝑟𝐼𝐷 𝑚𝑜𝑑 𝑘), where 

𝑘 was varied to change the size of checkpoints relative to the input 

that generates them. We varied the following parameters: 

 Target uptime SLA – 2 nines to 5 nines 

 𝑆𝑇 (when applicable) – Varied by varying 𝑘, which resulted in 

a range of 1.4 to 611.3 

 𝑊𝑇 (when applicable) - .01 to 100 

 𝑁𝐹 (when applicable) –2 to 5 

In all experiments, 𝐹𝑇 was 100. In other words, we varied the 

checkpoint size between ~one 100th of a failure period and ~6 times 

a failure period. The window size was varied between one ten 

thousandth of a failure period and one failure period. 

Figure 14 shows the actual uptime measured by the emulator given 

the target uptime used to generate 𝑅𝐹. In all runs, the predicted 

uptime was very close to the actual runtime, with very small 

variations caused by randomness in failure and slight variation in 

checkpoint size. Note that on-demand checkpointing isn’t included 

since all copies failed before getting a reliable value for uptime. 

 MODEL ANALYSIS 
Through a series of parameter explorations of the models presented 

in Section 4, this section establishes the following about the 
resiliency techniques modeled in this paper: 

 One size doesn’t fit all: There is no single resiliency strategy 

which efficiently covers most of the streaming query space. 

Specific strategies can be vastly better or worse compared to 

others, depending on scenario and environment 

characteristics. This is true even when considering only 

realistic scenarios (by orders of magnitude!). 

 No actionable “rules of thumb”: While some strategies are 

better than others for specific scenarios, the tradeoffs are quite 

complex, and a model is needed to wade through the efficacy 

of different approaches for different scenarios. 

 Active-active periodic checkpointing, an obvious 

generalization of single node checkpointing, is not discussed 

in the literature, likely due to the intuition that it is inferior to 

active-active on-demand checkpointing. Our models, 
however, show this strategy to be superior in many situations. 

 Computing 𝑹𝑭 and 𝑪𝑭 
While our model for single node replay allows computation of our 

metrics directly from the parameters, all other techniques require 

that we numerically find the zero of a function of 𝑈 = 1/𝑅𝐹 in 

order to determine the value of 𝑅𝐹 which exactly consumes all 

available budget. 

0 1 2 3 4 5 6

4

6

8

10



12 

 

Recalling Section 4.6, the shape of these functions is 

straightforward, in that they monotonically increase with 𝑈 

between 0 and 1, which are the bounds of interest. This allows us 

to do a binary search, avoiding the instabilities associated with 

techniques like Newton’s method. Additionally, techniques that use 

redundant active configurations have an additional layer of 

complexity in the expression of these functions in that the functions 

vary depending on the number of actives in the configuration, and 

can become extremely complex (e.g. the most complex function 

consumes an entire screen in Visual Studio). These functions are 

computed automatically from the vastly simpler integrals presented 

in this paper using Mathematica, for specific settings of 𝑁𝐹. 

Finally, the techniques in this paper which periodically checkpoint 

must determine the setting of 𝐶𝑇 which optimizes some notion of 

cost. At times we will actually optimize for minimal 𝐶𝐹. At other 

times we will find the optimal 𝐶𝐹 for which some bound on 𝑅𝐹 is 

met. For instance, we might find the setting for 𝐶𝑇 which minimizes 

𝐶𝐹 where 𝑅𝐹 is at most 2. Once again, we exploit the shape of the 

cost curves to provide fully stable optimal solutions. In this case, 

the curves are more complex, as they have a single peak, so a simple 

binary search is insufficient. Recall that the details for numerically 

solving such problems are described in Section 4.6. 

 Experimental Setup 
When comparing the resiliency approaches in this paper, there are 

generally known qualitative “rules of thumb”, which state 

conditions under which some of these techniques will be superior. 

For instance, replay based solutions tend to work better when 

checkpoints are large compared to the input that generates them. 

Also, there is a general consensus that active/active solutions 

become more attractive as the SLA becomes more difficult to 

satisfy. But where exactly are the cross-over points? And how harsh 

is the penalty for choosing the wrong technique? Are there other 

factors to consider? Also, we are the first to propose active-active 

periodic checkpointing solutions (for streaming). How do they 

compare to the on-demand checkpointing based solutions?  

These questions and others will be explored through a series of 

experiments which evaluate 𝐶𝐹 and 𝑅𝐹 for specific resiliency 

techniques and parameter settings using the models and evaluation 

techniques described in this paper. It is our intent to make available 

both the C# model evaluation code with which these experiments 

were conducted, as well as the Mathematica scripts used to 

integrate the functions described in our models. 

 Single Node: Replay vs. Checkpointing 
We start with scenarios that contrast replay and checkpointing. 

Intuitively, checkpoint size, as compared to input size, would seem 

to provide the most interesting source of contrast. If the checkpoint 

is small compared to the input that generated it, this would 

intuitively favor checkpointing, as we trade off checkpointing costs 

vs. replay costs. On the other hand, if the checkpoint is much larger 

than the input that generated it, this would seem to favor replay. 

Some situations which favor checkpointing are: 

 Aggregation scenarios where the internal state is a 

significantly reducing rollup 

 “Needle in a haystack” queries, where rare events, and the 

events around them are analyzed. 

There are also realistic situations which favor replay. For instance:  

 The query logic is very complicated, involving a large 

number of stateful streaming operations 

 The query logic contains an operation, like a cross-product, 

which is highly expansionary, and is followed by another 

non-reducing stateful operation. 

There are many scenarios, covering a wide spectrum of 

possibilities. Where is the crossover point? How bad do things get 

in the extreme cases? Does the right choice depend on something 

other than checkpoint size? To answer these questions, we 
performed a sensitivity analysis, where we varied the following: 

 Window size: Varied from .001 day to 1000 days (default 1) 

 Checkpoint size: Varied from .001 windows of input to 1000 

windows of input (default 1) 

 The uptime SLA: from 50% to 99.999% (default 90%) 

In addition, for all experiments, 𝐾𝐹  = 3, and 𝐹𝑇 = 1 month. In all 

cases, we varied one attribute and kept the other two constant, at 

their default values unless otherwise specified. Initially, we test 

our intuition about the sensitivity to checkpoint size. The result is 

shown in Figure 15. 

As expected, as the checkpoint size increases relative to the input 

size, periodic checkpointing becomes more and more costly, 

reaching nearly 100x the cost of an unresilient solution. In contrast 

the cost of replay doesn’t change at all as checkpoints get larger. 

The story is identical for 𝑅𝐹 which, for periodic checkpointing, 

grows to over 400x! 

Next, we consider the sensitivity of these two techniques to window 

size, with data reducing checkpoints (checkpoint size = 0.01). 

Clearly both techniques become more expensive as window size 

increases, but which one’s cost grows faster? The result of the 

experiment is shown in Figure 16. 

While both strategies become more expensive in response to larger 

windows, it is clear that replay suffers more, growing to 12x the 

cost of an unresilient solution, while checkpointing only grows to 

3.4x the cost of an unresilient solution. The story becomes even 

 

Figure 14: Target vs Actual Uptime 

 

 

Figure 15: Replay vs. Checkpoint - Vary 

Checkpoint Blowup 

 

Figure 16: Replay vs. Checkpoint -  

Vary WT 
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more stark when one considers the effect on 𝑅𝐹, which reaches over 

300x for replay, but is only 13x for checkpointing. 

The story is less intuitive when considering the effect of varying 

the SLA, which is shown in  Figure 17 and Figure 18. Not 

surprisingly single node periodic checkpointing becomes highly 

problematic with tough SLAs, reaching costs over 3000x times the 

cost of an unresilient solution, and requiring network capacity on 

compute nodes almost 20,000x more than the input rate. 

On the other hand, while replay also needs to initially find over 

2000 times the input rate network capacity on compute nodes, the 

overall cost remains at about the cost of an unresilient solution. 

Once a window’s worth of data is replayed on a recovering node, 

the cost becomes the same as an unresilient solution. The SLA only 

affects how quickly that window’s worth of data must be replayed. 

In fact, for very permissive SLAs, we have longer than a window 

to replay the first window’s worth of data, leading to costs lower 

than an unresilient solution, which never fails! 

Checkpointing, on the other hand, continues to pay a price for tough 

SLAs after recovery, since the taking of each checkpoint also incurs 

a downtime cost, making reduction of the initial reservation 

untenable. It is worth noting that a tradeoff is possible with periodic 

checkpointing, where the bandwidth reservation is higher at the 

beginning, incurring a lower resiliency budget for recovery, and 

where that extra budget is used to lower the reservation during 

normal operation. This will increase 𝑅𝐹 but reduce 𝐶𝐹. We leave it 

to future work to examine this tradeoff. 

 Periodic Checkpointing Strategies 
Conventional wisdom is that for weak SLAs, single node solutions 

are the most cost effective, but as the downtime SLA becomes more 

strict, active/active solutions become more attractive. How quickly 

does this effect become important, and how important? To address 

these questions, we compare single node periodic checkpointing 

with 2 node periodic checkpointing, where we vary the downtime, 

using the default values established in the previous section for the 

other parameters. The results are shown in Figure 19 and Figure 20. 

First, note that the conventional wisdom concerning the cost of 

single vs. multinode solutions is technically correct, but practically 

wrong! With even just a single 9 of resiliency SLA, 2 node periodic 

checkpointing is already cheaper than the single node version! As 

the SLA becomes more strict, the advantage of using just 2 nodes 

becomes quite extreme. While the dominance of multinode 

checkpointing over single node is unintuitive at first, one must 

consider that with a single node, there is no spare to cover both 

checkpointing and recovery costs. As a result, with a single node, 

we must overprovision networking during normal operation to 

cover the times during which more bandwidth is needed for 

checkpointing. The multinode version doesn’t suffer from this 

problem, which is why cost is independent of the SLA. 

On the other hand, 𝑅𝐹 for multinode periodic checkpointing isn’t 

independent of the SLA, and becomes quite high for tough SLAs 

with just 2 nodes. Fortunately, we can use more nodes to combat 

this problem. We therefore studied the effect of varying 𝑁𝐹 for 

tough SLAs. In this experiment, we used default values for all 

parameters except SLA, which was .99999, and the number of 

nodes, which we varied. The results are shown in    Figure 21. 

Increasing the number of nodes reduces 𝑅𝐹, while increasing costs. 

Fortunately, the cost increase isn’t prohibitive, with the lines 

crossing at about 5 nodes, where 𝑅𝐹 and 𝐶𝐹 are both about 2.5. 

 Multinode Periodic vs On-Demand 

Checkpointing 
In our evaluation so far, we have only considered periodic 

checkpointing. In fact, the literature on multinode checkpointing 

focuses exclusively on on-demand checkpointing. To our 

knowledge, we are the first to suggest that this obvious 

generalization of single node checkpointing could be worth 

considering. The purpose of this section is to, therefore, understand 

the networking cost of multinode periodic checkpointing as 

compared with on-demand checkpointing. 

The comparison is complicated by the fact that while all techniques 

other than on-demand checkpointing are backed by highly reliable 

storage systems (e.g. 11 9s over a 1 year span for S3 [21]), on-

demand, lacking such a stabilizer, must also meet a durability SLA 

(see Section 4.4). In our experiments, here, we chose the maximum 

𝑅𝐹 between the two types of analysis needed to meet all SLAs 

(uptime and durability). We chose as our durability SLA for on-

demand checkpointing, 5 9s of durability over a span of 10 years. 

This is actually a much weaker durability requirement than S3 

provides. 

The comparison is further complicated by the existence of two 

tunable parameters, the checkpointing period (i.e. 𝐶𝑇), which is a 

parameter for periodic checkpointing, and the number of replicated 

compute nodes (i.e., 𝑁𝐹), which is a parameter for both strategies. 

In addition, one can trade off 𝑅𝐹 and 𝐶𝐹 for both strategies by 

varying the number of nodes. 

In order to compare the techniques in a sensible way, we therefore, 

for a particular scenario, vary 𝑅𝐹, and calculate the optimal 𝐶𝐹 

across all possible settings of 𝐶𝑇 and 𝑁𝐹. This optimal value is 

calculated by calculating the optimal 𝐶𝐹 for each setting of 𝑁𝐹 

between 2 and 10 which is guaranteed to have 𝑅𝐹 of at most the 

target. When reaching the target 𝑅𝐹 is not possible, that setting for 

𝑁𝐹 is not used. Calculating the optimal 𝐶𝐹 for a particular setting 

 

 Figure 17: Replay vs. Periodic - Vary SLA, 

Measure CF 

 

 

     Figure 18: Replay vs. Periodic - Vary 

SLA, Measure RF 

 

 

Figure 19: 1 vs. 2 Node Periodic - Vary 

SLA, Measure CF 

 



14 

 

of 𝐶𝑇 and 𝑅𝐹 is straightforward and is described in the Appendix. 

Note that we use approaches that are guaranteed to be stable, and 

are not approximations, as in previous calculations. 

We now compare the two multinode checkpointing strategies, 

choosing default values for all parameters except the SLA, which 

is set to .99999. The results are shown in Figure 22. 

First, note that for almost every case, periodic checkpointing is 

actually cheaper than on-demand checkpointing! The cross-over 

point is actually at about 2, which is not a very large value for 𝑅𝐹. 

 EXTENDING & APPLYING MODELS 
In this section we show how our models can be extended and 

applied to cover a wide variety of resiliency variants and scenarios. 

 Incorporating Storage, Memory, CPU 
To this point, we have only considered reservation sizes and costs 

for networking. We now consider other resource costs. 

7.1.1 Storage Cost 
Storage device bandwidth is modeled in a fashion similar to 

network, except that we assume that modern distributed stores can 

perfectly load balance any storage activity, removing any local 

bottlenecks in the storage subsystem. As a result, there is no analog 

to 𝑅𝐹; only increased costs, which exactly correspond to the already 

calculated input logging and checkpoint reading and writing costs. 

These costs are then added the network costs after being multiplied 

with a cost normalization factor (i.e. a byte of storage bandwidth 

costs more than a byte of network bandwidth). 

More specifically, referring back to Figure 6, the un-normalized 

storage bandwidth cost, 𝑆𝐶𝐹, for single node replay, is 𝐶2 plus the 

cost of journaling the input: 

𝑆𝐶𝐹 =
𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇 +𝐾𝐹 ⋅ 𝐹𝑇

𝐾𝐹 ⋅ 𝐹𝑇
, 𝑅𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) 

Active-active replay is very similar, except that there are 𝑁𝐹 

compute nodes, each of which independently fail and recover: 

𝑆𝐶𝐹 =
𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇) + 𝐾𝐹 ⋅ 𝐹𝑇

𝐾𝐹 ⋅ 𝐹𝑇
, 𝑅𝑇 =

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑁𝐹
 

Considering Figure 8, storage cost for single node checkpointing is 

simply the edges leading to storage in the cost diagram, which is  

𝐶2 + 𝐾𝐹 ⋅ (𝐶3 + 𝐶1): 

𝑆𝐶𝐹 =
𝐾𝐹 ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
𝐾𝐹 ⋅ 𝐹𝑇

 

For active-active periodic checkpointing, referring back to Figure 

10, the storage costs are 𝐾𝐹 ⋅ (𝐶1 + 𝐶3) + 𝑁𝐹 ⋅ 𝐶2: 

𝑆𝐶𝐹 =
𝑁𝐹 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) + 𝐾𝐹 ⋅ 𝐹𝑇 +

𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

𝐾𝐹 ⋅ 𝐹𝑇
 

For active-active on-demand checkpointing, there are no storage 

costs beyond the already included cost of logging the input: 

𝑆𝐶𝐹 = 1 

7.1.2 CPU Capacity and Cost 
For CPU cost, we introduce two new input parameters for CPU: 

 𝐸𝐶= CPU cost of taking, sending checkpoint (cost, e.g. cycles) 

 𝐼𝑃= Input processing cost (cost/time, e.g. cycles/sec) 

Note that these parameters are exactly CPU centric versions of 𝐶𝑆 
and 𝐼𝑅. Similarly, we introduce: 

 𝐸𝑇 =
𝐸𝐶

𝐼𝑃
= The checkpointing CPU time assuming input 

processing time CPU bandwidth (time) 

Again, note that 𝐸𝑇 is exactly the CPU centric version of 𝑆𝑇. We 

now treat CPU like network, where CPUs can process load 

associated with both input processing and checkpointing. Using 

this approach, we introduce: 

 𝑅𝐶𝑃𝑈𝐹 = The recovery CPU capacity reservation needed to 

meet the SLA, as a factor of input processing capacity (factor) 

Note that 𝑅𝐶𝑃𝑈𝐹 is exactly the CPU centric version of 𝑅𝐹. In 

addition, the calculation of 𝑅𝐶𝑃𝑈𝐹 is identical to the calculation of 

𝑅𝐹, except that 𝐸𝑇 is used instead of 𝑆𝑇. Furthermore, both 𝑹𝑭 (for 

network) and 𝑹𝑪𝑷𝑼𝑭 (for CPU) resource reservations must be 

satisfied in order for the query to meet its SLA 

In terms of cost, referring back to Figure 6, the un-normalized CPU 

capacity cost, 𝐶𝐶𝐹, for single node replay, is 𝐶1 + 𝐶2: 

𝐶𝐶𝐹 =
𝑅𝑇 ⋅ 𝑅𝐶𝑃𝑈𝐹 − 𝑅𝑇 + 𝐹𝑇

𝐹𝑇
, 𝑅𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) 

Active-active replay is very similar, except that there are 𝑁𝐹 

compute nodes, each of which independently fail and recover: 

𝐶𝐶𝐹 =
𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐶𝑃𝑈𝐹 − 𝑅𝑇 + 𝐹𝑇)

𝐹𝑇
, 𝑅𝑇 =

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑁𝐹
 

In single node periodic checkpointing, since the CPU reservation 

size doesn’t change, it’s simply that reservation size, substituting 

𝐸𝑇 for 𝑆𝑇 in the calculation: 

𝐶𝐶𝐹 = 𝐶𝑃𝑈𝑅𝐹 

For active-active periodic checkpointing, referring back to Figure 

10, the CPU costs for this case are 𝑁𝐹 ⋅ (𝐶1 + 𝐶2) + 𝐶3: 

 

  Figure 20: 1 vs. 2 Node Periodic - Vary SLA, 

Measure RF 

 

   Figure 21: Multinode Periodic - Vary 

Nf,  Measure CF & RF 

 

 

        Figure 22: Periodic vs On-Demand  

                  Checkpointing - Vary Rf 
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𝐶𝐶𝐹 =
𝑁𝐹 ⋅ (𝐹𝑇 + 𝐸𝑇 +

𝐶𝑇
2
) +

𝐸𝑇 ⋅ 𝐹𝑇
𝐶𝑇

𝐹𝑇
 

Referring to Figure 11, the CPU cost for active-active on-demand 

checkpointing is captured by holding the CPU reservation for the 

whole duration of time: 

𝐶𝐶𝐹 = 𝑁𝐹 ⋅ 𝐶𝑅𝐹 

Memory costs are easily calculated by adding up the number of 

reserved bytes across all nodes, which requires the addition of a 

parameter, and then combining with other costs after normalizing. 

Again, there is no analog to 𝑅𝐹 for this resource. We therefore 

introduce: 

 𝑀𝐶𝐹 = The un-normalized memory cost per failure period 

 𝑀𝐹 = The cost of reserving the necessary memory per billing 

period compared to the NIC cost of receiving the input on a 

compute node for that same period. 

 𝐶𝑃𝑈𝐹 = CPU cost of processing the input on a single compute 

node in comparison to the NIC cost of receiving the input on 

that node. 

 𝑆𝐹 = Cost of transferring the input to a single storage device 

in comparison to the NIC cost of receiving the input on that 

node. 

We can now compute total cost: 

𝑇𝑜𝑡𝑎𝑙𝐶𝐹 =
(𝐶𝐹 +𝑀𝐹 ⋅ 𝑀𝐶𝐹 + 𝐶𝑃𝑈𝐹 ⋅ 𝐶𝐶𝐹 + 𝑆𝐹 ⋅ 𝑆𝐶𝐹)

1 + 𝑀𝐹 + 𝐶𝑃𝑈𝐹 + 𝑆𝐹
 

 Distributed Execution 
Many streaming deployments are distributed in nature. 

Specifically, different parts of the streaming pipeline are executed 

on different machines with the output of one machine feeding as 

input into another machine, which computes the next portion of the 

pipeline. In such situations, the pipeline state associated with each 

node must be protected from failure. 

Typically, some form of reliable enough (relative to the uptime 

SLA) queuing is used to protect the conversation between 

distributed nodes, such that when a node fails, its state can be 

recovered through some combination of checkpointing and replay. 

Note that for particularly tough SLAs, transactional queues are used 

which are backed by replicated storage, which can meet very high 

availability and durability requirements [21]. Again, a choice must 

be made, for each pipeline running within a node, for how 

protection from failure is best achieved. This paper presents the 

models needed to make these choices in a clear, disciplined manner. 

Of course, if we have two nodes, each of which have a 5 nines 

uptime SLA, the resulting query uptime will be less than 5 nines, 

since if either fails, the pipeline stalls. If our overall goal is 5 nines 

of uptime, we must budget downtime less than this for each node. 

One mildly conservative way of doing this, assuming uncorrelated 

failure, is to split the downtime budget between the two nodes in a 

way which minimizes cost. It is possible that there will be some 

double counting of downtime if both nodes are down at the same 

time, but this is a very small portion of overall downtime. 

 Sharding 
Sharding is a strategy sometimes employed in streaming settings, 

when there is not enough memory, CPU capacity, or network 

available on a single node to execute the full query. To cope with 

this situation, the query is leveraged to produce an effective 

partitioning of the input, with each partition being sent to one 

compute shard. Depending on the computation, the results from 

these sharded computations may or may not be brought back 

together using a combining node. If the results are brought back 

together, global time order must be maintained. For the purposes of 

this discussion, we assume this is the case. Note that each shard, as 

well as the combining node, must still be resiliently protected with 

one of the strategies presented in this paper.  

Note that there are, therefore, two analyses which must be done. 

One for the shards, and one for the combining node. We assume, in 

this analysis, that we know the total global input rate 𝐼𝑅, and total 

checkpoint size for the sharded computation 𝐶𝑆. In addition, assume 

we know all relevant information for the query running on the 

combining node. Note that this information is all independent of the 

sharding factor 𝑆𝐹. 

The result of maintaining global order is that when a single shard 

goes down, the entire query stalls. Effectively, this decreases the 

mean to failure by the sharding factor, which has a cost increasing 

effect. On the other hand, because each shard’s state, and the input 

that generated it, is reduced by the same fraction, recovery times 

after each failure are shorter. While we do not fully study these 

trade-offs in this paper, we demonstrate how such a study would 

proceed by providing the model changes necessary in single stage 

map/reduce style sharding, followed by combining, assuming that 

the ingress nodes shuffle data to the correct streaming node: 

              𝐹𝑇𝑁𝑒𝑤 =
𝐹𝑇

𝑆𝐹
            𝐼𝑅𝑁𝑒𝑤 =

𝐼𝑅

𝑆𝐹
          𝐶𝑆𝑁𝑒𝑤 =

𝐶𝑆

𝑆𝐹
 

The alternate values for 𝐹𝑇 , 𝐼𝑅, 𝑎𝑛𝑑 𝐶𝑆 are now directly used in our 

models to compute 𝑅𝐹. The results tell us, for each resiliency 

approach, given a particular sharding factor, the overprovisioning 

needed to achieve our SLA. Since we assume knowledge of the 

relevant query characteristics for the combining node, this analysis 

proceeds as in the distributed execution case, where the downtime 

is split between the combining node, and all the shards as one unit. 

Note that while we use the new failure, input rate, and checkpoint 

size values for computing 𝑅𝐹, we use both the original and new 

values for computing cost. In particular, increased compute node 

reservations must be reflected in the cost, but storage costs are 

unaffected by sharding. This is a simple alteration of the formulas. 

 Caching 
Recent work [13][14] exploits the potential value of caching for 

workloads where query state is very large, long living, 

partitionable, and highly inactive after an initial period of activity.  

Online advertising, a problem of such high value that large 

distributed systems are built for the sole purpose of solving this 

problem, is an example of such a workload. In particular, users’ 

browsing and ad related activity are tracked for a long period of 

time (e.g. a week). But most browsing sessions are, in fact, over 

after a short period of time (e.g. 10s of minutes), and will not 

contribute further to the streaming calculation. 

Keeping all the session state in expensive DRAM is a poor choice 

for the states which are unlikely to be accessed. The problem is 

exacerbated for checkpointing strategies, which repeatedly 

checkpoint inactive states, significantly increasing the cost of 

resiliency. 

One solution is to push the inactive states into replicated, cheap 

persistent storage, and only cache, in memory, the states which are 

still active. This significantly reduces the memory footprint of the 

compute nodes, which helps with both memory cost and resiliency.  



16 

 

MillWheel advocates using an existing key/value store for storing 

inactive states, but if one is running one of the active/active 

resiliency techniques to protect compute nodes, a better choice 

could be for the replicas to store their inactive states in locally 

attached storage. This would completely eliminate the network 

traffic associated with sending the states to the distributed store. 

Reasoning about resiliency for these cases is straightforward, as 
long as we additionally know: 

 The in-memory state reduction from caching. 

 The required bandwidth for sending/receiving inactive states 
to/from storage. 

In particular, the state reduction from caching is a savings applied 

directly to memory costs, and checkpoint sizes. The reduced 

checkpoint sizes are then fed into the cost model. The bandwidth 

for sending and receiving inactive states is used to calculate 

additional storage costs, as well as network costs if a distributed 

key/value store is used. Note that if locally attached storage is used 

to store inactive states, part of the recovery cost is to transmit the 

cached states on other nodes, similar to failure of a node in the 

key/value store, which must be accounted for if such a store is used.  

 RELATED WORK 
Streaming Resiliency   Message-passing systems have 

traditionally employed a wide variety of resiliency strategies, 

including logging, checkpointing and redundancy; see [19] for a 

survey. In data stream processing systems, active-active (also 

called active replication, active standby, or process-pairs) 

approaches were first proposed in Flux [5], and were adopted by 

several systems [10]. Timestream [8] uses checkpointing, along 

with leveraging query semantics to determine how much replay is 

needed. D-Streams [7] treats a streaming query as a sequence of 

micro-batch computations, with prior micro-batch state serving as 

checkpoints. Several systems achieve resiliency by offloading 

query state [13][14][15], either to resilient databases or distributed 

key-value stores. In this paper, we describe and/or discuss how the 

Shrink framework can model such resiliency techniques. 

Several research papers [1][2] argue that active replication in 

streaming systems suffers from a high resource overhead, e.g., 

doubling the number of required processing nodes. In this work, we 

show that depending on the required SLA, active replication may 

in fact be the cheapest strategy by huge margins. On the other hand, 

Hwang et al. [11] use analysis and simulations to similarly report 

that active standby is superior to passive standby as it can achieve 

much shorter recovery time with a similar amount of overhead. Gu 

et al. [4] perform an empirical evaluation of the two resiliency 

strategies: active standby and passive standby, and report that 

passive standby presents a different tradeoff from active standby: 

longer recovery time, but 90% less overhead. These techniques 

provide useful intuitions for relative costs; however, unlike Shrink, 

they do not take the uptime SLA into account, nor do they model 

varying resource reservation requirements. These factors are 

critical for the cloud deployments of today, and lead to the 

completely different analysis techniques presented in this paper. 

Offline Query Resiliency   DBMSs generally provide fault-

tolerance through replication [17]; however they do not provide 

intra-query fault-tolerance. Phoenix [18] explores resiliency for 

Web enterprise applications. Techniques for query suspend and 

resume [16] use models to choose techniques for rollback recovery 

in a DBMS if a long-running query fails mid-execution, which is 

similar to the streaming query recovery problem. Map-Reduce 

provides intra-query resiliency by materializing output between the 

map and reduce stages, and replaying these tuples on failure. 

Upadhyaya et al. [9] propose a cost model for the total runtime of 

an online (sharded) query plan over a bounded dataset in a 

distributed setting, across several resiliency strategies (they do not 

consider active standby). In contrast, we focus on modeling 

resiliency overheads for real-time streaming queries in the context 

of an overall SLA for downtime, and include active-active solutions 

in the space of strategies considered. 

 CONCLUSIONS & FUTURE WORK 
This paper has introduced the first, comprehensive, cloud friendly 

comparison between different resiliency techniques for streaming 

queries. In particular, we take a resource reservation style approach, 

where the reservation is allowed to decrease over time. This is 

highly appropriate for the multi-tenant cloud environments in 

which these queries typically run. 

In this paper, we show that specific resiliency strategies can be 

vastly better or worse compared to others by orders of magnitude, 

there are no actionable “rules of thumb”, informative models are 

tractable, our models are accurate (typically within 1% in practice), 

and can be adapted to describe many resiliency strategies, including 

distributed queries, sharding, and caching. We also introduce 

active-active periodic checkpointing, a clear generalization of 

single node checkpointing, and show that it is much better than on-

demand caching in most situations. 

We expect this work to be expanded upon in several ways. For 

instance, this paper focuses specifically on streaming queries, but 

many distributed services in the cloud face similar design choices. 

The uptime guarantees they provide can likely be modeled with an 

approach similar to what is described here. Adapting the techniques 

presented here to these other settings is likely very worthwhile. 
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