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ABSTRACT

Modern cloud developers face many distributed systems complexi-
ties when building disaggregated applications from cloud building
blocks. We propose a new class of cloud services, called Serverless
State Management Systems (SSMS), that abstracts away these com-
plexities and transparently manages fault-tolerance, deployment,
and scaling of a logical cloud application on physical cloud re-
sources. An SSMS, analogous to a DBMS, provides three important
abstractions for disaggregated applications: 1) a logical applica-
tion model, similar to relational algebra, that describes application
semantics but abstracts away the deployment details, 2) strong re-
silient programming primitives, similar to ACID transactions, that
simplifies fault-tolerant programming in the cloud, and 3) smart,
cost-based optimization schemes that automates scheduling, place-
ment, and other details, similar to a query optimizer. We present a
preliminary design for SSMS and associated research challenges.

1 INTRODUCTION

The cloud is undergoing a major shift. Developers increasingly
build disaggregated applications by composing managed cloud ser-
vices (e.g., Amazon Aurora, Azure EventHubs) and fine-grained
disaggregated resources (e.g., serverless compute, cloud storage).
This new reality, broadly described as “serverless”, claims to allow
cloud developers to quickly assemble flexible applications that only
consume resource as needed, and quickly scale to meet fluctuating
demands. In reality, developers have a different experience: consider
a workload from Amazon Prime Video that monitors a video/audio
stream, converts the stream into frames and audio buffers, analyzes
the stream for defects, and then send real-time notification for de-
tected defects [8]. In a serverless architecture, developers ended
up using AWS Step Function [3] to orchestrate unreliable compute
units and S3 storage buckets for data sharing, which proved to
be both expensive and unscalable. The Prime Video team had to
rewrite their applications as a monolith that is scaled and deployed
onto elastic containers for performance, and reported as much as
90% savings on infrastructure cost and better scalability. In short,
the current disaggregated stack cannot automatically achieve the
serverless vision. Distributed system expertise and careful engi-
neering is often required to make disaggregation work.

What is needed is a way to automate such engineering efforts
using strong, novel abstractions — the prime video team reported
that most of their application logic and components remained un-
changed, and much of the work was in deciding how to deploy,
compose, and scale individual services. The right abstraction should
be able to separate the logical cloud application, consisting of busi-
ness and coordination logic, from the physical execution layer that
resiliently deploys, and automate the execution layer to transpar-
ently perform the kind of adjustment detailed by the prime video
team. We postulate that such an abstraction layer would require
the following three cornerstones, drawing analogies from Database
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Management Systems (DBMSs) that have proven a successful and
enduring abstraction for data processing workloads:
Logical Application Model. DBMS users define their data and
workload using logical schema and relational algebra, without ref-
erence to how data is laid out on disk or how queries are executed.
This has allowed the same SQL query! to execute on vastly dif-
ferent undelrying engines (e.g., row vs. column stores, embedded
engine vs. globally distributed service). In contrast, cloud applica-
tions today are written specifically to deployment paradigms (e.g.,
VMs, Kubernetes) or even implementations of these paradigms
(e.g., AWS’s management API). Cloud user should be able to write
their programs once in a logical model of the cloud, which is then
mapped onto a variety of backends automatically.
Fault-Tolerance Primitives. ACID transactions are central to us-
ability of DBMSs. Most users are able to enjoy strong guarantees
without relying on application-level failure-handling logic or con-
currency control. In the modern cloud, while many building blocks
are fault-tolerant in isolation, there are few cross-service guaran-
tees in a composed application; users must devise custom solutions
to resiliently compose them, which is non-trivial. The ideal cloud
abstraction provides transaction-like primitives for resilient compo-
sition. Users achieve fault-tolerance by building their multi-service
applications with the primitives, and infrastructure providers take
care of implementing the primitives.
Automatic Cost-based Optimizations. Cost-based query opti-
mizers are one of the most important components of a traditional
DBMS, as they transform declarative user queries into highly effi-
cient physical execution plans using a combination of search-based
techniques and statistics about the data. Meanwhile, automatic op-
timization of cloud applications are still in its early days, limited
to treating workloads as blackboxes and implementing only rudi-
mentary knob-tuning or auto-scaling. The ideal cloud abstraction
similarly makes dynamic adjustments to applications based on col-
lected statistics and workload patterns, and intelligently navigates
the performance-cost trade-off curve according to high-level user
input (e.g., whether to prioritize performance or cost-savings).

Earlier solutions address these challenges to varying degrees, but
none to our knowledge combines all three aspects into a viable solu-
tion. For example, cluster management tools such as Kubernetes(7]
make some intelligent placement decisions and offer fault-tolerance
in the form of backup and recovery, but provide little help for
application-level tasks such as resilient orchestration of workflows;
actor systems such as Microsoft Orleans [14] and Ray [32] provide
strong and intuitive logical programming models, but require users
to manually checkpoint state to storage for fault-tolerance.

In this paper, we propose a new cloud programming abstrac-
tion called the Serverless State Management System (SSMS) that
addresses these challenges simultaneously. On a high level, SSMS
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incorporates an expressive, actor-like programming interface, au-
tomatically manages state for fault-tolerance, and transparently
applies application-level optimizations based on runtime metrics for
cost savings and performance boosts. Our key insight is that strong
fault-tolerance is the basis for simple programming abstractions
and transparent optimizations. Specifically, given fault-tolerance
across composed components, application designers don’t need to
worry about tricky issues like retries, recovery and logging, and the
optimization layer can also rely on the fault tolerance layer to safely
migrate/change the deployment without impacting application cor-
rectness. To summarize, we make the following contributions:

e We propose the SSMS abstraction that combines strong program-
ming abstractions, transparent fault-tolerance, and cost-based
optimizations to serve as the “narrow waist” between disaggre-
gated cloud applications and cloud infrastructure.

e We sketch out the architecture of an initial SSMS platform and
argue for its generality, performance and extensibility.

e We describe a number of transparent optimizations achievable in
SSMS and provide preliminary evidence for their effectiveness.

2 OUR PROPOSAL

Users build SSMS applications using logical message-passing au-
tomata — arbitrary programs written as stateful message handlers,
inspired by classical modeling of distributed systems using I/O au-
tomata [30]. For most developers, this experience will be similar to
actors in Ray or Microsoft Orleans. In contrast to actors, however,
SSMS automata are generally more coarse-grained, longer-living,
and manipulate messages explicitly instead of through methods
or RPCs. Like Orleans actors, SSMS automata are virtual. SSMS
manages the location and resources for each automata, and users
only refer to them by SSMS-managed unique ids. To interact with
the system, users send messages to some automata, which may
then kick off further internal interactions.

Importantly, SSMS focuses on automatically and resiliently man-
aging the state of each automaton. In contrast, users of Orleans or
Ray must manage custom checkpoints on either external storage
or a distributed object store for resilience. We formalize the SSMS
model using fail-restart automata. On a high-level, this means each
SSMS automaton logically has two copies of its state — one volatile
and one persistent. Failures result in the automata losing its volatile
state and recovering from the (unavoidably stale) persistent state.
Users supply application-specific checkpointing/recovery logic, but
it is up to SSMS to manage checkpoints and control when to invoke
them. To correctly orchestrate complex workflows across multiple
automata, SSMS relies on the Composable Resilient Steps (CReSt)
model [27]. In CReSt, each automaton receives some messages, up-
dates its local state, and then sends some messages as an atomic,
all-or-nothing unit that is recoverable after failure. We design SSMS
to implement CReSt support by mediating all message and storage
interactions, and expose it as a programming primitive to users.
We require SSMS components to be written using CReSt by default,
which guarantees that the resulting composed applications are re-
silient — external users are not be able to distinguish between an
execution trace with failures and one without (except through pos-
sible performance degradations during recovery). SSMS mitigates
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Figure 1: SSMS Overview

the resulting performance challenge with the performant DARQ
system proposed in [27], discussed in detail in Section 3.

Resilience in SSMS enables more aggressive online reconfigu-
ration and optimization of applications. Because application com-
ponents can now be restarted after failure without impacting cor-
rectness of the entire system, SSMS can also restart them for per-
formance improvements, cost savings, or both. Examples include
switching between serverless and provisioned backends for au-
tomata, shutting down compute capacity for inactive automata,
co-locating automata that frequently communicate, or combining
multiple fine-grained automata into one equivalent “super” au-
tomata for batching opportunities. SSMS is uniquely positioned to
implement these optimizations, as they are often per-automaton de-
cisions that are too fine-grained for manual decision, and based on
dynamically changing messaging patterns that a traditional static
scheduler may not be aware of a priori.

Putting it together, we propose for SSMS to be the mediating
runtime layer between disaggregated cloud applications and cloud
infrastructure, as shown in Figure 1. SSMS exposes a virtual au-
tomata interface to users and transparently deploys automata to
underlying cloud infrastructure. Unlike previous work, SSMS inte-
grates state management of automata and controls when and where
to persist state. This allows SSMS to support strong resilience guar-
antees and effectively hide failure recovery from users. SSMS takes
advantage of this to implement a number of automatic online opti-
mizations for both performance and cost in a cloud environment.

3 DESIGNING SSMS V0.1

We now sketch a preliminary design for an SSMS Figure 2, building
on the DARQ system proposed by [27]. We start by introducing
DARQ, and then outline how SSMS can be implemented as a man-
agement layer on top of a DARQ cluster.

3.1 Background: DARQ

DARQ is a cloud-native storage service with built-in CReSt sup-
port. Each DARQ instance is essentially a log that encapsulates
the state of a fail-restart automaton. Users of DARQ write applica-
tions as stateful message handlers that update their local state as
reactions to external messages, and (optionally) send out additional
messages to other automata. DARQ records messages in the log,
and then automatically checkpoints/recovers the log and reliably
delivers messages and exactly-once to enforce CReSt semantics.
Importantly, DARQ is designed to support compute-storage separa-
tion; DARQ message handlers run on logically separate, ephemeral
compute nodes and rely solely on CReSt for resilience, and are only
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Figure 2: SSMS v0.1 Architecture

co-located with storage for performance where appropriate. Devel-
opers can treat DARQ as a write-ahead log, using self-messages
(similar to write-ahead log entries) to encode state updates and
submitting them as part of a step to DARQ. When a failure occurs,
the recovered message handler then consumes all self-messages to
replay and reconstruct its in-memory state before resuming oper-
ations. Because CReSt is atomic, if some external effect of a step
(i.e., outgoing DARQ messages) survives the failure, so must the
self-messages that allow reconstruction of the state as of the step.

3.2 Automata Implementation

Each SSMS automaton is implemented as an ephemeral compute
node attached to a DARQ, and user code is written as DARQ mes-
sage handlers. Non-DARQ services compose with SSMS using
CReSt-compatible wrappers — for example, a SQL database can
emulate CReSt semantics using the well-known transactional out-
box pattern [11]. External services register such wrappers with
SSMS, and the rest of the system is able to communicate with them
as if they are other automata. SSMS does not manage such external
services and it is up to the users to correctly register and operate
them. At any given time, SSMS maintains a pool of DARQ instances
and a pool of ephemeral compute nodes. When the user requests
an automata, SSMS serves the request by picking one of each and
loading user code into the compute node. Both pools are heteroge-
neous and consist of instances that occupy different points in the
cost-performance trade-off space (e.g., fast but expensive dedicated
VMs vs. slow but cheap serverless functions).

3.3 SSMS Catalog

To manage the various DARQ instances, SSMS implements a cata-
log service. Because catalog content is unlikely to change rapidly,
we implement it using reliable cloud data stores (e.g., a cloud-native
SQL database). Logically, the catalog stores 3 tables: 1) a table map-
ping automata types to user definitions (i.e., code files), 2) a list
of available compute and DARQ nodes, their types, how to reach
them, and their current load, and 3) an currently-active automata

table, mapping automaton ID to automaton type, compute back-
end, and DARQ backend. Each DARQ uses the catalog to translate
logical IDs in user code to physical addresses for message rout-
ing and caches this information for performance. We adopt a lazy
protocol for handling outdated cache entries. First, each message
between DARQs are explicitly tagged with the automaton ID they
are intended for, and each DARQ instance checks whether they
are currently serving the intended automaton upon receiving a
message. A DARQ instance will then be able to detect stale cached
entries when it receives a message for an automaton it does not
currently service, and send a signal for invalidation.

The catalog also requires some compute capability to perform
metadata operations; this includes instantiation of a new automa-
ton, deallocation of an an inactive one, and recovery (from failure
or re-deployment). The key challenge here is again fault-tolerance,
as even though the catalog content is the source of truth, metadata
operations has non-atomic side effects (e.g., loading user code into
a compute node). Failure during a metadata operation may cause
resource leakage or other anomalies. To overcome this, each meta-
data operation is written as a resilient workflow, achievable with
DARQs as shown in [27], ensuring that all necessary steps of an
operation completes regardless of metadata worker failure.

3.4 SSMS Management Layer

Finally, a management layer is responsible for tuning, scaling, and
optimizing an SSMS layer at runtime in the background. The SSMS
management layer can be broadly categorized into 3 components
as shown in Figure 2, an autoscaler that controls the size and com-
position of DARQ and compute pools, an optimizer that makes
placement and migration decisions, and a monitoring component
that collects runtime statistics to support the first two components.

As mentioned, we envision for SSMS’s optimization to be cost-
based and online, inspired by both adaptive query processing [13]
and more recent work in self-tuning and self-driving databases [31,
33, 40]. On a high-level, we propose to implemenet a cost model
that, given an SSMS deployment and a predicted workload, can
forecast the performance and cost of the system in the near future.
The cost model relies both on hard-coded rules and observation of
active deployments. Users specify a custom weighting function (e.g.,
minimize cost so long as performance does not drop below some
level) that rolls multiple objectives into a single scalar optimization
target. SSMS will attempt to launch new automata in “safe” config-
uration depending on the target metric (e.g., over provision if users
value performance), and then incrementaly refine the deployment
as it collects information about the behavior of deployed automata.

The SSMS autoscaler is responsible for managing provisioned
resources in the cluster. Even though SSMS can scale out quickly
using serverless offerings such as FaaS, much prior work has demon-
strated that provisioned resources beat serverless functions in both
performance and cost if utilization is high. The SSMS autoscaler
is therefore required to detect stable parts of the workload, and
launching the approrpiate amount of provisioned resources to sup-
port that workload. The primary challenge here is that the optimal
provisioning depends is conditioned on the optimizer — a perfectly
valid provisioning would appear under-utilized if the optimizer
does not yet place much work on provisioned VMs. As a stopgap



solution, we expect to invoke the autoscaler much less frequently
than the optimizer, so the optimizer has time to converge on a good
configuration before the infrastructure shifts under it. For a more
complete and sophisticated solutions, however, SSMS must resort
to learning-based approaches similar to BRAD [25]. We leave a
more detailed discussion of the solution for future work.

4 OPTIMIZING SSMS APPLICATIONS

In this section, we present a (non-exhaustive) list of possible opti-
mizations in the SSMS. For each optimization, we briefly discuss
their implementation and illustrate how much benefit they can
bring using microbenchmarks.

4.1 Optimization through Placement

The most basic and broadest class of optimizations for SSMS is
placement, which selects the DARQ instance and compute instance
for each automaton. Every placement decision occupies a differ-
ent point in the cost-performance trade-off space, and SSMS navi-
gates the application cost-performance curve by varying placement
choices. For DARQs, SSMS can choose between high-performance,
low-latency replicated DARQ, mid-tier instances with dedicated
servers but various cheaper cloud storage as backend, or cheap
instances that exist solely on cloud storage and must be loaded into
the compute node when used. For compute nodes, SSMS may utilize
spare compute capacity on dedicated DARQ machines, dedicated
compute-intensive VMs, or serverless functions that are launched
on-demand. Within each of these categories, there may be further
variations based on machine types, pricing (e.g., spot instances), or
specialized hardware available (e.g., GPUs). The following class of
optimizations can all be captured as placement decisions:

Scale Up/Down. To scale-up or down an automaton, SSMS chooses
more powerful compute/storage to deploy it onto. Note also that
scaling of compute and storage is separate, and it is possible to
redeploy a I/O heavy automaton to faster storage without changing
its compute instance, and vice-versa.

Automatic Deactivation. Automatic deactivation is a staple of
any serverless offering, and allows users to pay nothing or very
little for inactive deployments in exchange for a slower spin up
time. In SSMS, if an automaton is inactive, its compute node maybe
deallocated transparently, and only replaced with an on-demand
FaaS when a request arrives. Additionally, if an automaton has no
unconsumed (self or incoming)messages, it becomes essentially
stateless and can be unassigned from a DARQ.

Co-location. Physical co-location of disaggregated resources is a
key design principle for performance of serverless computation [37].
SSMS is able to capture this by having multiple compute instances
that are co-located with DARQ instances, or multiple DARQ in-
stances that are co-located on the same VM/storage backend. Mes-
sages between such co-located instances are logical and can be
implemented with highly efficient local operations.

4.2 Multiplexing DARQs

As shown in [27], each DARQ instance supports up to 750k steps
per second on fast storage; to saturate one DARQ with a single
sequential compute node, each compute steps cannot spend more
than a few microseconds. It would be ideal to multiplex automata

onto a single physical DARQ to increase utilization. However, mul-
tiple compute nodes may submit parallel steps that conflict with
each other. The original DARQ system sidesteps this by enforcing
that only one compute node is allowed to connect to DARQ at
any given time. To support multiplexing in DARQ, we modify our
earlier safeguards to allow for partitions - DARQ users explicitly
tag each message with an additional partition ID, and DARQ allows
multiple compute nodes as long as they work on disjoint partitions.
By definition, partitions do not share state and cannot conflict with
each other. Every partition on a physical DARQ can then be consid-
ered a logical DARQ that has the same guarantees and semantics of
a DARQ, but shares resources with its peers on a physical DARQ.
For simplicity, we enforce that logical DARQs are the smallest unit
of operation in SSMS - each automaton corresponds to one logical
DARQ, and multiplexing beyond this level must be done in user
application. The SSMS layer hides logical multiplexing of DARQ
from users, as users only refer to DARQs using logical IDs.

For added runtime flexibility, DARQ must also support dynamic
movement of logical DARQs. Logically, a migration is a step that
consumes all previously unconsumed messages of a logical DARQ,
and copies them as outgoing messages to their new location. Migra-
tion is complete when all such messages have been received. The
primary challenge here is guarding against concurrent steps and
new messages during a migration. To address this, the migration
must only begin after the local DARQ has been configured to reject
requests against the migration target. This means that a logical
DARQ appears as temporarily unavailable during migration, which
may cause some messaging delays, but is ultimately safe as long as
the migration eventually completes. DARQ has built-in epoch pro-
tection capabilities to support this [29], and our scheme is similar
to earlier systems that implements dynamic key migration [26, 28].

4.3 Transparent Replica and Stand-Bys

Lastly, DARQ applications can be transparently replicated for high
availability. To do so, SSMS allocates more than one compute node
to an SSMS automaton, with one being designated the primary.
Because SSMS controls messaging, it can enforce primary/backup
semantics by only streaming external messages to the recognized
primary and only allowing the recognized primary to submit steps.
Backup compute nodes receive self-message for replaying, which
allows them to build up the same local state as the primary, in clas-
sical replicated state machine fashion [34]. To switch to a backup,
SSMS merely needs to make a local decision to re-route messages
and step priviledge to a backup node. Note here that this only
requires client-supplied recovery logic, and clients need not imple-
ment additional mechanisms such as consensus or heartbeat. When
SSMS detects that certain compute nodes are failing more than
others, it may decide to transparently spin up / increase replicas.
Alternatively, SSMS can also spin up temporary replica before a
scehduled automata relocation, or in response to pre-emption on a
spot instance, to reduce impact on operations.

4.4 Preliminary Evaluation

We now show the effectiveness of these optimization techniques
using experiments. We conduct our experiments on the Azure pub-
lic cloud using a simple application that repeatedly computes pi to
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Figure 3: SSMS Cost-Performance Trade-Off Space

some precision (compute scale factor c¢). Each completed task then
enqueues a new computation task to a different DARQ to continue
the computation. We deploy this application on various compute
node types, DARQ backends and (manual) placement configura-
tions to showcase the potential SSMS might bring in automatically
optimizing these decisions.

Cost-Performance Trade-off. We deploy the simple application
on two VM sizes: D32s v3 and D8s v3 [9] and three DARQ storage
backends: hot-replicated (simulated with volatile memory), man-
aged cloud SSD [4], and Azure storage blob [6]. Each computation
step computes pi in parallel to take full advantage of VM compute
capacity. We then compute the monthly cost of such deployments
using Azure’s current pricing information (assuming 3-way replica-
tion for simulated replication backend). We report the result of in
Figure 3. As seen, the options chosen span a large area in the cost-
performance trade-off space. The sweet spot for each application is
also highly variable — note that in the first non compute-intensive
scenario, upgrading to faster storage are much more cost-efficient
than upgrading VMs, whereas in the compute-intensive scenario,
fast VM matters more than fast storage. Note here also that we
calculated the price of blob-based configurations assuming a 10%
utilization rate, as blobs charge users per request. Assuming peak
utilization throughout the month, blobs turned out to be the most
expensive, but quickly become cost-efficient with low utilization.
Co-location. We now show the impact of co-location on perfor-
mance. We run the same workload as before, but when co-locating
DARQ we no longer force the next task to enqueue onto another
DARQ (co-located DARQ-only), and we further take advatange of
DARQ’s co-located compute API to elide communication overhead
between DARQ and the compute node when noted (co-located both).
We show our results in Figure 4, which illustrates that co-location
can have orders-of-magnitude of impact on overall performance.
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Figure 4: Benefits of Co-location in Different Scenarios

However, it is again highly dependent on the application - if the
application is compute-intensive, co-location has some benefits, but
is much more limited than I/O intensive ones.

Overall, these experiments show that by picking the right con-
figuration, SSMS can potentially have large performance improve-
ments or cost-savings. Such decisions are sufficiently complicated
and sensitive to changes in the workload, humans cannot be ex-
pected to make case-by-case manual decisions. Therefore, it is both
beneficial and necessary to have an automated solution like SSMS.

5 RELATED WORK

Orchestration Systems. Traditionally, cloud providers offer re-
sources in coarse-grained bundles as statically provisioned VMs.Most
modern users manage VMs through higher-level orchestration sys-
tems such as Kubernetes [7], Amazon ECS [1], or Apache Mesos [20].
These systems typically employ some intelligent cluster schedul-
ing algorithm to place workload [22], but fundamentally exposes a

low-level machine-level abstraction (i.e., raw VMs or containers).

Recent work has also proposed to extend this paradigm to multiple

clouds [38]. Compared to SSMS, such orchestration systems better

supports compatbility with earlier VM-based cloud software, but

has limited ability to optimize applications as low-level blackboxes.

Serverless Frameworks. Much of the prior work on disaggregated

cloud applications focuses on the paradigm of “serverless”, particu-
larly the Function-as-a-Service paradigm (FaaS) [2, 5]. Despite the

promises of simplified and flexible cloud programming [24], FaaS

is considered flawed and cannot support efficient data processing,

state management, or complex coordination [19]. Researchers have

proposed various solutions to this by either orchestrating fault-
tolerant workflows across Faa$ instances [3, 10, 12], or improving

stateful programming support [17, 23, 37, 42]. In contrast, SSMS

is designed with statefulness and fault-tolerance as a first-class

concern, and also incorporates provisioned resources.

Streaming and Actor Frameworks. SSMS is closest to actor sys-
tems such as Ray [32], Orleans [14] in its programming model and

abstraction. However, SSMS is based on more classical distributed

systems modeling of I/O automata [30]. Most actor frameworks

also do not provide strong fault-tolerance guarantees, whereas

SSMS provides transparent and resilient state management using

the CReSt primitive and DARQ system. In this respect, SSMS is sim-
ilar to previous proposals of actor-oriented database systems [15],

but we engineer SSMS as an integrated system rather than a sepa-
rate database backend. SSMS also share many characteristics with

stream processing systems such as Trill [16] and Kafka Streams [41].
Most notably, many modern stream processing systems also provide

strong exactly-once guarantees and take advantage of the guarantee

to dynamically optimize for execution [21]. The main difference is



that SSMS targets a more general cloud workload beyond streaming,
and also explicitly optimizes for cost in addition to performance.
Cloud Operating Systems. Some recent work proposes radical
re-engieering of the current cloud stack. Several proposals exist for
building a new operating systems layer over mutliple machines to
hide distributed complexity in the data center [35, 39]. The most
radical of these approaches argue that cloud applications can be
built on top of a high-performance distributed SQL database [36].
SSMS, in contrast, is an application-facing system that operates
above the usual OS layer. SSMS is closest to recent proposals from
Google to write applications as logical monoliths but physically
distribute them with an automated runtime layer [18]; unlike this
proposal, SSMS provides resilience as part of the guarantee, which
enables many of our optimization techniques.

6 CONCLUSION

We proposed the Serverless State Management System (SSMS), a
cloud abstraction layer that combines a logical application model,
strong fault-tolerant primitives, and transparent runtime optmiza-
tions. We sketched a prototype design of one such SSMS that is able
to provide transparently resilient state management for an actor-
like interface, and propose a variety of automatic optimizations
possible under this architecture. We believe SSMS can serve as the
“narrow waist” between user applications and cloud infrastructure
and unlock new potentials for the cloud.
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