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Diverse Scenarios for Ana\yﬂcs

e Real-time 1A

« Monitor app telemetry (e.g., ad clicks) & -
raise alerts when problems are detected

e Real-time with historical

« Correlate live data stream with historical
activity (e.g., from 1 week back)

e Offline

 Develop initial monitoring query using logs
« Back-test monitoring query over historical logs

» Progressive

- Non-temporal analysis (e.g., Bl) over large dataset,
stream data, get quick approximate results

Real-Time -
Dashboard ’
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Interactive Query Authoring



I nree Key Requirements
» Performance

, o . Scenarios

 High throughput: critical for large offline datasets

 Low latency & overhead: Important for real time monitoring * monitor
telemetry &
raise alerts

» Fabric & language integration o
- Cloud app/service acts as driver, uses the analytics engine — + develop initial
- Need rich data-types, integrate custom logic seamlessly anuoer;'}for'ng

* back-test over
historical logs

° Quel’y mOde| + offline analysis
- Need to support real-time and offline data, temporal and (BI) with early

relational queries, early results for exploratory offline queries




Trill: Fast Streaming Analytics L|Iorary

e Performance

- 2-4 orders of magnitude faster than traditional SPEs

- For relational queries, comparable to best DBMS Dashboard

» User-controlled latency specification
- explicit latency vs. throughput tradeoff

- Fabric & language integration

« Built as high-level language (HLL) library component
« Works with arbitrary HLL data-types & libraries

« Query model

« Extended LINQ syntax based on tempo-relational query model
« Supports broad & rich analytics scenarios (relational, progressive, time-based)

el

+ Fabric -

Interactive Query Authoring



Trill's Use Cases

Azure Stream Analytics
Cloud service

With Scope for Bing Ads

With Orleans for Halo game
monitoring & debugging

Key enabler: performance +
fabric & language integration +
query model
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Example (simplified)
» Define event data-type in C#

struct ClickEvent { long ClickTime; long User; long AdId; }

- Define ingress

var str = Network.ToStream(e => e.ClickTime, Latency(10secs));

« Write guery (In C# app) Lambda expression
var query =
str.Where(e => e.User % 100 < 5) .
.Select(e => { e.AdId }) Grouping key selector

.GroupApply( e => e.AdId,
s => s.Window(5min).Aggregate(w => w.Count()));

e Subscribe to results Grouped sub-query

guery.Subscribe(e => Console.Write(e)); // write results to console



Latency-Through

Data organized as st

out Spectrum

ream of batches

* Purely physical (no impact on query results)

(10 secs)

« Batch up to 10 secs of data
« Small batches - low latency

Users specity latency constraint

« Large batches = high throughput
« More load - larger batches = better throughput




+ Columnar
« Columnar format within each batch

Timestamps as arrays

Bitvector to indicate row absence @
class DataBatch {
long[] SyncTime;

Bitvector BV; @
}

One array per payload field I“I

class UserData Gen : DataBatch {

long[] ¢ ClickTime; N
long[] c_User; timestamp \ payload columns
long[ ] C_AdId3 bitvector

}
Batch classes are generated & compiled on-the-fly (under the hood)

Enables efficient QP & serialization



+ Fabric & Language Integration

___________________________________________________________

« But, user view is row-oriented

- Dynamically generate and compile HLL code Trill IEII
for operators i

On(Batch b) {

for i = @ to b.Size {

if !'(b.c_User[i]%100 < 5)
set b.bitvector[i]

}

next-operator.0On(b)

« Our example: filter (where) @Q

« User writes str.Where(e => e.User % 100 < 5)

 General technique

 Generate tight loops over batches, with inlined
expressions (done using reflection)

- Avoid method calls within loops IIII |
+ Timestamps are columns — accessed only if needed e SRR |

- Pointer-swing where possible | Send(events)
ﬁstr.lﬂhere(e => e.User % 100<5);

___________________________________________________________

}




See Paper ...

» Property-based operator codegen specialization
» Grouped & batched operator algorithms

» Library-mode & multi-core scheduler
» Efficient serialization & string support
» Rich query language

« SQL queries with progressive (early) results
- Temporal queries
» Sliding, hopping, tumbling, data-dependent session windows

- Temporal joins, set difference
« Powerful high-perf expression-based user-defined aggregate framework




Fvaluation (sample)
» Pre-loaded datasets in main memory

« 16-core machine
» Streaming filter
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Fvaluation (sample)
» Pre-loaded datasets in main memory

« 16-core machine
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Fvaluation (sample)

» Pre-loaded datasets in main memory

« 16-core machine

» femporal queries
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Conclusions

e Trill is a fast & expressive library for analytics

 2-4 orders-of-magnitude faster than traditional streaming engines

« Comparable to columnar databases for offline SQL queries
 But with progressive (early result) support

 Expressive query language and support for HLL type-system & code

« Library that can be easily embedded in a variety of settings (distributed fabrics,
servers, Cloud applications, devices, ...)

« Trill is being used across diverse analytics scenarios
« More info @ http://aka.ms/trill



http://aka.ms/trill
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