== Microsoft

Trill: A High-Performance Incremental
Query Processor for Diverse Analytics

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Rob Deline,
Danyel Fisher, John C. Platt’, James F. Terwilliger, John Wernsing

Microsoft Research

Contact: badrishc@microsoft.com Twitter: @badrishc

“Current affiliation: Google. This work was performed at Microsoft Research.

Diverse Scenarios for Ana\yﬂcs

e Real-time 1A

« Monitor app telemetry (e.g., ad clicks) & -
raise alerts when problems are detected

e Real-time with historical

« Correlate live data stream with historical
activity (e.g., from 1 week back)

e Offline

 Develop initial monitoring query using logs
« Back-test monitoring query over historical logs

» Progressive

- Non-temporal analysis (e.g., Bl) over large dataset,
stream data, get quick approximate results

Real-Time -
Dashboard ’

mmmmm

Interactive Query Authoring

I nree Key Requirements
» Performance

, o . Scenarios

 High throughput: critical for large offline datasets

 Low latency & overhead: Important for real time monitoring * monitor
telemetry &
raise alerts

» Fabric & language integration o
- Cloud app/service acts as driver, uses the analytics engine — + develop initial
- Need rich data-types, integrate custom logic seamlessly anuoer;'}for'ng

* back-test over
historical logs

° Quel’y mOde| + offline analysis
- Need to support real-time and offline data, temporal and (BI) with early

relational queries, early results for exploratory offline queries

Trill: Fast Streaming Analytics L|Iorary

e Performance

- 2-4 orders of magnitude faster than traditional SPEs

- For relational queries, comparable to best DBMS Dashboard

» User-controlled latency specification
- explicit latency vs. throughput tradeoff

- Fabric & language integration

« Built as high-level language (HLL) library component
« Works with arbitrary HLL data-types & libraries

« Query model

« Extended LINQ syntax based on tempo-relational query model
« Supports broad & rich analytics scenarios (relational, progressive, time-based)

el

+ Fabric -

Interactive Query Authoring

Trill's Use Cases

Azure Stream Analytics
Cloud service

With Scope for Bing Ads

With Orleans for Halo game
monitoring & debugging

Key enabler: performance +
fabric & language integration +
query model

jq/!’[l,: ; .
46, g
'S; M/Cﬁc’wo 4 v‘/v*‘-/?*,- X ~
/7/(/'?/% 7 2075 10
O, T 03,
EESE\/;» e
¥ ‘.H U

Trill Moves Big Data Faster. b~ s of

Magnitude | Cam@a:\ﬁj\
%\(\Q) de\— a\'\

K \)\'\ ‘S\ﬂam
\(et .
igh-tech research behind
Halo 5: Guardians
better for gamers

| A

e dY (‘\'\C\C‘a

Inside Micr~-

Ao

gpnar®

e A\§!

Work. Life. Productivity.

e Web And Communications Software

g Microsoft's stream processing
; engine boosts Bing, Azure
\Wc©O>" services

of Q’(.‘(\G

neY
\,as‘a“ﬁ Joab Jackson

IDG Mews Service Jan 27, 2015 2:05 PM

X]

Example (simplified)
» Define event data-type in C#

struct ClickEvent { long ClickTime; long User; long AdId; }

- Define ingress

var str = Network.ToStream(e => e.ClickTime, Latency(10secs));

« Write guery (In C# app) Lambda expression
var query =
str.Where(e => e.User % 100 < 5) .
.Select(e => { e.AdId }) Grouping key selector

.GroupApply(e => e.AdId,
s => s.Window(5min).Aggregate(w => w.Count()));

e Subscribe to results Grouped sub-query

guery.Subscribe(e => Console.Write(e)); // write results to console

Latency-Through

Data organized as st

out Spectrum

ream of batches

* Purely physical (no impact on query results)

(10 secs)

« Batch up to 10 secs of data
« Small batches - low latency

Users specity latency constraint

« Large batches = high throughput
« More load - larger batches = better throughput

+ Columnar
« Columnar format within each batch

Timestamps as arrays

Bitvector to indicate row absence @
class DataBatch {
long[] SyncTime;

Bitvector BV; @
}

One array per payload field I“I

class UserData Gen : DataBatch {

long[] ¢ ClickTime; N
long[] c_User; timestamp \ payload columns
long[] C_AdId3 bitvector

}
Batch classes are generated & compiled on-the-fly (under the hood)

Enables efficient QP & serialization

+ Fabric & Language Integration

« But, user view is row-oriented

- Dynamically generate and compile HLL code Trill IEII
for operators i

On(Batch b) {

for i = @ to b.Size {

if !'(b.c_User[i]%100 < 5)
set b.bitvector[i]

}

next-operator.0On(b)

« Our example: filter (where) @Q

« User writes str.Where(e => e.User % 100 < 5)

 General technique

 Generate tight loops over batches, with inlined
expressions (done using reflection)

- Avoid method calls within loops IIII |
+ Timestamps are columns — accessed only if needed e SRR |

- Pointer-swing where possible | Send(events)
ﬁstr.lﬂhere(e => e.User % 100<5);

}

See Paper ...

» Property-based operator codegen specialization
» Grouped & batched operator algorithms

» Library-mode & multi-core scheduler
» Efficient serialization & string support
» Rich query language

« SQL queries with progressive (early) results
- Temporal queries
» Sliding, hopping, tumbling, data-dependent session windows

- Temporal joins, set difference
« Powerful high-perf expression-based user-defined aggregate framework

Fvaluation (sample)
» Pre-loaded datasets in main memory

« 16-core machine
» Streaming filter

—
o
()
o
o

1000
100

1
0.1

Throughput (x 1M ev/sec)
o

TGP

-

SPE-X Naiad DB-X Trill

Fvaluation (sample)
» Pre-loaded datasets in main memory

« 16-core machine

10000
Relational | 3
« Relational queries 3
E
= 100
<
=]
Q.
L
®)
-
° 1
- 2 4 |
Degree of parallelism (#threads)
e Tril|: Filter2 (C2) === DB-X: Filter2 (C2)
s Tl Sum (C1) == DB-X: Sum (C1)
Trill: Select (C2) DB-X: Select (C2)
w—Trill: G-Agg (C1) DB-X: G-Agg (C1)
Trill: Equi-Join (C1) =sk= DB-X: Equi-Join (C1)

Fvaluation (sample)

» Pre-loaded datasets in main memory

« 16-core machine

» femporal queries

Select (NON®) oo rrrrrrrrrrrrrrrrdrrrr)
Select @) oo rrrrrrrrrrrrrrFrra

Project

AlterLifetime

Count Window) e rr s drrrrrn
m SPE-X (multi-core)

Grouped Sum (Window) Fommmmat OTrill (1 core)

Temporal Join ! @ Trill (multi-core)

0.1 1 10 100 1000
Throughput (x 1 million events/sec)

Conclusions

e Trill is a fast & expressive library for analytics

 2-4 orders-of-magnitude faster than traditional streaming engines

« Comparable to columnar databases for offline SQL queries
 But with progressive (early result) support

 Expressive query language and support for HLL type-system & code

« Library that can be easily embedded in a variety of settings (distributed fabrics,
servers, Cloud applications, devices, ...)

« Trill is being used across diverse analytics scenarios
« More info @ http://aka.ms/trill

http://aka.ms/trill

=" Microsoft

© 2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on
the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

